, Volume 11, Issue 1, pp 175–182 | Cite as

A Concentric Plasmonic Platform for the Efficient Excitation of Surface Plasmon Polaritons

  • Nancy Rahbany
  • Wei Geng
  • Rafael Salas-Montiel
  • Sergio de la Cruz
  • Eugenio R. Méndez
  • Sylvain Blaize
  • Renaud Bachelot
  • Christophe Couteau


We propose a plasmonic device consisting of a concentric ring grating acting as an efficient tool for directional launching and detection of surface plasmon polaritons (SPPs). Numerical simulations and optical characterizations are used to study the fabricated structured gold surface. We demonstrate that this circularly symmetrical plasmonic device provides an efficient interface between free space radiation and SPPs. This structure offers an excellent platform for the study of hybrid plasmonics in general and of plasmon-emitter couplings in particular, such as those occurring when exciting dye molecules placed inside the ring. As illustrated in this work, an interesting property of the device is that the position of excitation determines the direction of propagation of the SPPs, providing a flexible mean of studying their interactions with molecules or dipole-like emitters placed on the surface.


Surface plasmon polaritons Plasmon-emitter coupling Photoluminescence Diffraction grating 


  1. 1.
    Tame MS, McEnery KR, Özdemir ŞK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9:329–340CrossRefGoogle Scholar
  2. 2.
    Choy JT, Bulu I, Hausmann BJM, Janitz E, Huang I-C, Lončar M (2013) Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings. Appl Phys Lett 103:161101CrossRefGoogle Scholar
  3. 3.
    Barthes J, Bouhelier A, Dereux A, des Francs GC des (2013) Coupling of a dipolar emitter into one-dimensional surface plasmon. Sci Rep 3:2734Google Scholar
  4. 4.
    López-Tejeira F, Rodrigo SG, Martín-Moreno L, García-Vidal FJ, Devaux E, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, González MU, Weeber JC, Dereux A (2007) Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3:324–328CrossRefGoogle Scholar
  5. 5.
    Huang X, Brongersma ML (2013) Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons. Nano Lett 13:5420–5424CrossRefGoogle Scholar
  6. 6.
    Krenn JR, Weeber JC (2004) Surface plasmon polaritons in metal stripes and wires. Philos Trans R Soc Math Phys Eng Sci 362:739–756CrossRefGoogle Scholar
  7. 7.
    Hartmann N, Piredda G, Berthelot J, Colas des Francs G, Bouhelier A, Hartschuh A (2012) Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter. Nano Lett 12:177–181CrossRefGoogle Scholar
  8. 8.
    Sanders AW, Routenberg DA, Wiley BJ, Xia Y, Dufresne ER, Reed MA (2006) Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett 6:1822–1826CrossRefGoogle Scholar
  9. 9.
    Weeber J-C, Dereux A, Girard C, Krenn JR, Goudonnet J-P (1999) Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys Rev B 60:9061CrossRefGoogle Scholar
  10. 10.
    Stepanov AL, Krenn JR, Ditlbacher H, Hohenau A, Drezet A, Steinberger B, Leitner A, Aussenegg FR (2005) Quantitative analysis of surface plasmon interaction with silver nanoparticles. Opt Lett 30:1524–1526CrossRefGoogle Scholar
  11. 11.
    Liu T, Shen Y, Shin W, Zhu Q, Fan S, Jin C (2014) Dislocated Double-Layer Metal Gratings: An Efficient Unidirectional Coupler. Nano Lett 140618121255001Google Scholar
  12. 12.
    Di Martino G, Sonnefraud Y, Kéna-Cohen S, Tame M, Özdemir ŞK, Kim MS, Maier SA (2012) Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Lett 12:2504–2508CrossRefGoogle Scholar
  13. 13.
    Venugopalan P, Zhang Q, Li X, Kuipers L, Gu M (2014) Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens. Opt Lett 39:5744CrossRefGoogle Scholar
  14. 14.
    Kumar P, Tripathi VK, Kumar A, Shao X (2015) Launching focused surface plasmon in circular metallic grating. J Appl Phys 117:013103CrossRefGoogle Scholar
  15. 15.
    Chen J, Sun C, Li H, Gong Q (2014) Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit. Nanoscale 6:13487–13493CrossRefGoogle Scholar
  16. 16.
    Kéna-Cohen S, Stavrinou PN, Bradley DDC, Maier SA (2013) Confined surface plasmon–polariton amplifiers. Nano Lett 13:1323–1329CrossRefGoogle Scholar
  17. 17.
    Chen W, Abeysinghe DC, Nelson RL, Zhan Q (2009) Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Lett 9:4320–4325CrossRefGoogle Scholar
  18. 18.
    Mahboub O, Palacios SC, Genet C, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Ebbesen TW (2010) Optimization of bull’s eye structures for transmission enhancement. Opt Express 18:11292–11299CrossRefGoogle Scholar
  19. 19.
    Aouani H, Mahboub O, Devaux E, Rigneault H, Ebbesen TW, Wenger J (2011) Plasmonic antennas for directional sorting of fluorescence emission. Nano Lett 11:2400–2406CrossRefGoogle Scholar
  20. 20.
    Wang D, Yang T, Crozier KB (2011) Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation. Opt Express 19:2148–2157CrossRefGoogle Scholar
  21. 21.
    Kinzel EC, Srisungsitthisunti P, Li Y, Raman A, Xu X (2010) Extraordinary transmission from high-gain nanoaperture antennas. Appl Phys Lett 96:211116CrossRefGoogle Scholar
  22. 22.
    Brokmann X, Coolen L, Hermier J-P, Dahan M (2005) Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface. Chem Phys 318:91–98CrossRefGoogle Scholar
  23. 23.
    Vion C, Spinicelli P, Coolen L, Schwob C, Frigerio J-M, Hermier J-P, Maître A (2010) Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface. Opt Express 18:7440–7455CrossRefGoogle Scholar
  24. 24.
    Valencia CI, Méndez ER, Mendoza BS (2003) Second-harmonic generation in the scattering of light by two-dimensional particles. JOSA B 20:2150–2161CrossRefGoogle Scholar
  25. 25.
    Maradudin AA, Michel T, McGurn AR, Méndez ER (1990) Enhanced backscattering of light from a random grating. Ann Phys 203:255–307CrossRefGoogle Scholar
  26. 26.
    De la Cruz S, Méndez ER, Macías D, Salas-Montiel R, Adam PM (2012) Compact surface structures for the efficient excitation of surface plasmon-polaritons. Phys Status Solidi B 249:1178–1187CrossRefGoogle Scholar
  27. 27.
    De la Cruz S (2013) Diseño de estructuras plasmónicas. CICESEGoogle Scholar
  28. 28.
    Choudhury SD, Badugu R, Ray K, Lakowicz JR (2012) Silver-gold nanocomposite substrates for metal-enhanced fluorescence: ensemble and single-molecule spectroscopic studies. J Phys Chem C Nanomater Int 116:5042–5048CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nancy Rahbany
    • 1
  • Wei Geng
    • 1
  • Rafael Salas-Montiel
    • 1
  • Sergio de la Cruz
    • 2
  • Eugenio R. Méndez
    • 2
  • Sylvain Blaize
    • 1
  • Renaud Bachelot
    • 1
  • Christophe Couteau
    • 1
    • 3
    • 4
  1. 1.Laboratory of Nanotechnology, Instrumentation and Optics, ICD CNRS UMR 6281University of Technology of TroyesTroyesFrance
  2. 2.División de Física ApplicadaCentro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico
  3. 3.CINTRA CNRS-Thales-NTU, UMI 3288SingaporeSingapore
  4. 4.Centre for Disruptive Photonics Technologies (CDPT)Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations