, Volume 10, Issue 6, pp 1833–1839 | Cite as

Dynamically Tunable Fano Metamaterials through the Coupling of Graphene Grating and Square Closed Ring Resonator

  • Jun DingEmail author
  • Bayaner Arigong
  • Han Ren
  • Jin Shao
  • Mi Zhou
  • Yuankun Lin
  • Hualiang ZhangEmail author


We present the numerical studies of a novel hybrid graphene-metal Fano metamaterial, which is composed of a graphene grating (graphene ribbon array) and a square closed ring resonator (SCRR) separated by a dielectric substrate. The destructive interference between the narrow and broad electrical dipolar surface plasmons induced respectively on the surface of the graphene ribbon and the SCRR leads to the classical analog of electromagnetically induced transparency (EIT). By decreasing the thickness of the substrate spacer (enhancing the coupling between the two components), a double EIT system could be achieved. More importantly, the transparency windows in the hybrid structures can be actively controlled by varying the applied gate voltage on the graphene ribbon. Large effective group index and small loss within the transparency windows suggest the promising slow-light applications.


Graphene Tunable Fano metamaterial Electromagnetically induced transparency 



This work is supported by research grants from the U.S. National Science Foundation under Grant Nos. ECCS-1128099, CMMI-1109971, and CMMI-1266251

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298CrossRefGoogle Scholar
  2. 2.
    Chang W-S, Lassiter JB, Swanglap P, Sobhani H, Khatua S, Nordlander P, Halas NJ, Link S (2012) A plasmonic Fano switch. Nano Lett 12:4977–4982CrossRefGoogle Scholar
  3. 3.
    Liu N, Hentschel M, Weiss T, Alivisatos AP, Giessen H (2011) Three-dimensional plasmon rulers. Science 332:1407–1410CrossRefGoogle Scholar
  4. 4.
    Wu C, Khanikaev AB, Shvets G (2011) Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys Rev Lett 106:107403CrossRefGoogle Scholar
  5. 5.
    O’Hara JF, Singh R, Brener I, Smirnova E, Han J, Taylor AJ, Zhang W (2008) Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt Express 16:1786–1795CrossRefGoogle Scholar
  6. 6.
    Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI (2007) Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett 99:147401CrossRefGoogle Scholar
  7. 7.
    Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401CrossRefGoogle Scholar
  8. 8.
    Singh R, Rockstuhl C, Lederer F, Zhang W (2009) Coupling between a dark and a bright eigenmode in a terahertz metamaterial. Phys Rev B 79:085111CrossRefGoogle Scholar
  9. 9.
    H. Raether (1988) Surface plasmons on smooth and rough surfaces and on gratings, SpringerGoogle Scholar
  10. 10.
    Zharov AA, Shadrivov IV, Kivshar YS (2003) Nonlinear properties of left-handed metamaterials. Phys Rev Lett 91:037401CrossRefGoogle Scholar
  11. 11.
    Khatua S, Chang W-S, Swanglap P, Olson J, Link S (2011) Active modulation of nanorod plasmons. Nano Lett 11:3797–3802CrossRefGoogle Scholar
  12. 12.
    Cao T, Wei C, Simpson RE, Zhang L, Cryan MJ (2014) Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity. Sci Rep 4:4463Google Scholar
  13. 13.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  14. 14.
    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630–634CrossRefGoogle Scholar
  15. 15.
    Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7:394–399CrossRefGoogle Scholar
  16. 16.
    Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, García de Abajo FJ (2013) Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7:2388–2395CrossRefGoogle Scholar
  17. 17.
    Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:064302CrossRefGoogle Scholar
  18. 18.
    Chuang FT, Chen PY, Cheng TC, Chien CH, Li BJ (2007) Improved field emission properties of thiolated multi-wall carbon nanotubes on a flexible carbon cloth substrate. Nanotechnology 18:395702CrossRefGoogle Scholar
  19. 19.
    Hanson GW (2008) Dyadic Green’s functions for an anisotropic. Non-local model of biased graphene. IEEE Trans Antennas Propag 56:747–757CrossRefGoogle Scholar
  20. 20.
    Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694CrossRefGoogle Scholar
  21. 21.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622CrossRefGoogle Scholar
  22. 22.
    Brar VW, Jang MS, Sherrott M, Lopez JJ, Atwater HA (2013) Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett 13:2541–2547CrossRefGoogle Scholar
  23. 23.
    Yeung KYM, Chee J, Yoon H, Song Y, Kong J, Ham D (2014) Far-infrared graphene plasmonic crystals for plasmonic band engineering. Nano Lett 14:2479–2484CrossRefGoogle Scholar
  24. 24.
    Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307CrossRefGoogle Scholar
  25. 25.
    Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6:7806–7813CrossRefGoogle Scholar
  26. 26.
    Chen Z, Chen J, Wu Z, Hu W, Zhang X, Lu Y (2014) Tunable Fano resonance in hybrid graphene-metal gratings. Appl Phys Lett 104:161114CrossRefGoogle Scholar
  27. 27.
    M. Amin, M. Farhat, and H. Baǧcı (2013) A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications, Scientific Reports. 3Google Scholar
  28. 28.
    Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA (1983) Optical properties of the metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Optics 22:1099–1119CrossRefGoogle Scholar
  29. 29.
    Gusynin VP, Sharapov SG, Carbotte JP (2007) Magneto-optical conductivity in graphene. J Phys: Condens Matter 19:026222Google Scholar
  30. 30.
    Hanson GW (2008) Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J Appl Phys 104:084314CrossRefGoogle Scholar
  31. 31.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294CrossRefGoogle Scholar
  32. 32.
    Tassin P, Zhang L, Koschny T, Economou EN, Soukoulis CM (2009) Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett 102:053901CrossRefGoogle Scholar
  33. 33.
    Nikitin AY, Guinea F, Garcia-Vidal FJ, Martin-Moreno L (2012) Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys Rev B 85:081405CrossRefGoogle Scholar
  34. 34.
    Zhang L, Tassin P, Koschny T, Kurter C, Anlage SM, Soukoulis CM (2010) Large group delay in a microwave metamaterial analog of electromagnetically induced transparency. Appl Phys Lett 97:241904CrossRefGoogle Scholar
  35. 35.
    Smith DR, Vier DC, Koschny T, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71:036617CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of North TexasDentonUSA
  2. 2.Department of PhysicsUniversity of North TexasDentonUSA

Personalised recommendations