, Volume 10, Issue 3, pp 595–603 | Cite as

Tempering Hemispherical Radiative Properties with a Resonance Compilation

  • Yu-Bin ChenEmail author
  • Yung-Chun Lee
  • Yu-Fan Chang
  • Yao-Hua Lin
  • Peng-Hsiang Chen


This work demonstrates tailored hemispherical absorptance A, reflectance R, and transmittance T spectra at the coexistence of three resonances. The localized surface plasmon resonance (LSPR) is excited by a hexagonal array of 15-nm-thick circular Au pillars at the wavelength λLSPR. The Berreman and epsilon near zero (ENZ) mode resonances are generated within a fixed region λENZ ≈ 1.5 μm using diffracted waves inside a 230-nm-thick indium-tin-oxide film. The λLSPR of four samples approaches λENZ via increasing pillar diameters. For the first time, a broadband absorptance enhancement resulting from three compatible resonances is shown. The resonance compilation together with material loss cause failure of a popular LSPR indicator, which are replaced by the robust indicators proposed here.


Berreman mode Epsilon near zero mode Localized surface plasmon resonance Radiative property Resonance coexistence 



Authors appreciate Mr. Hao-Yuan Chung for his assistance in fabricating samples. Helps from Mr. Bo-Hung Chen and Mr. Fu-Yuan Shih during revision are also appreciated. The work is supported by the National Science Council (NSC) and Ministry of Science and Technology (MOST) in Taiwan under grants No. NSC-101-2628-E-006-014-MY3, No. NSC-103-2120-M-006-005, and MOST-103-3113-E-006-005.


  1. 1.
    Hesketh PJ, Zemel JN, Gebhart B (1986) Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature 324:549–551CrossRefGoogle Scholar
  2. 2.
    Maruyama S, Kashiwa T, Yugami H, Esashi M (2001) Thermal radiation from two-dimensionally confined modes in microcavities. Appl Phys Lett 79:1393–1395CrossRefGoogle Scholar
  3. 3.
    Priambodo PS, Maldonado TA, Magnusson R (2003) Fabrication and characterization of high-quality waveguide-mode resonant optical filters. Appl Phys Lett 83:3248–3250CrossRefGoogle Scholar
  4. 4.
    Li T, Liu H, Wang FM, Dong ZG, Zhu SN, Zhang X (2006) Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission. Opt Express 14:11155–11163CrossRefGoogle Scholar
  5. 5.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  6. 6.
    Litchinitser NM, Maimistov AI, Gabitov IR, Sagdeev RZ, Shalaev VM (2008) Metamaterials: electromagnetic enhancement at zero-index transition. Opt Lett 33(20):2350–2352CrossRefGoogle Scholar
  7. 7.
    Skigin DC (2009) Transmission through subwavelength slit structures with a double period: a simple model for the prediction of resonances. J Opt A Pure Appl Opt 11:105102CrossRefGoogle Scholar
  8. 8.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91CrossRefGoogle Scholar
  9. 9.
    Vassant S, Hugonin JP, Marquier F, Greffet JJ (2012) Berreman mode and epsilon near zero mode. Opt Express 20:23971–23977CrossRefGoogle Scholar
  10. 10.
    Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2:496–500CrossRefGoogle Scholar
  11. 11.
    Chen JX, Wang P, Zhang ZMM, Lu YH, Ming H (2011) Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure. Phys Rev E 84:026603CrossRefGoogle Scholar
  12. 12.
    Giudicatti S, Marabelli F, Valsesia A, Pellacani P, Colpo P, Rossi F (2012) Interaction among plasmonic resonances in a gold film embedding a two-dimensional array of polymeric nanopillars. J Opt Soc Am B 29:1641–1647CrossRefGoogle Scholar
  13. 13.
    Tan W-C, Sambles JR, Preist TW (2000) Double-period zero-order metal gratings as effective selective absorbers. Phys Rev B 61:13177–13182CrossRefGoogle Scholar
  14. 14.
    Wang LP, Zhang ZM (2010) Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays. J Opt Soc Am B 27:2595–2604CrossRefGoogle Scholar
  15. 15.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857CrossRefGoogle Scholar
  16. 16.
    Juan ML, Righini M, Quidant R (2011) Plasmon nano-optical tweezers. Nat Photonics 5:349–356CrossRefGoogle Scholar
  17. 17.
    Vassant S, Archambault A, Marquier F, Pardo F, Gennser U, Cavanna A, Pelouard JL, Greffet JJ (2012) Epsilon-near-zero mode for active optoelectronic devices. Phys Rev Lett 109:237401CrossRefGoogle Scholar
  18. 18.
    Boriskina SV, Ghasemi H, Chen G (2013) Plasmonic materials for energy: from physics to applications. Mater Today 16:375–386CrossRefGoogle Scholar
  19. 19.
    Chen YB, Chiu FC (2013) Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons. Opt Express 21:20771–20785CrossRefGoogle Scholar
  20. 20.
    Abbas MN, Cheng CW, Chang YC, Shih MH, Chen HH, Lee SC (2011) Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2. Appl Phys Lett 98:121116CrossRefGoogle Scholar
  21. 21.
    Jin JM (2002) The finite element method in electromagnetics. Wiley, New YorkGoogle Scholar
  22. 22.
    Palik ED (ed) (1998) Handbook of optical constants of solids III. Academic, San DiegoGoogle Scholar
  23. 23.
    Bender M, Seelig W, Daube C, Frankenberger H, Ocker B, Stollenwerk J (1998) Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films. Thin Solid Films 326:72–77CrossRefGoogle Scholar
  24. 24.
    Lee YC, Chiu CY (2008) Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching. J Micromech Microeng 18:075013CrossRefGoogle Scholar
  25. 25.
    Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press, Boca RatonGoogle Scholar
  26. 26.
    Wang XJ, Flicker JD, Lee BJ, Ready WJ, Zhang ZM (2009) Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes. Nanotechnology 20:215704CrossRefGoogle Scholar
  27. 27.
    Kim H, Gilmore CM, Pique A, Horwitz JS, Mattoussi H, Murata H, Kafafi ZH, Chrisey DB (1999) Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. J Appl Phys 86:6451–6461CrossRefGoogle Scholar
  28. 28.
    Trejo-Cruz C, Mendoza-Galvan A, Lopez-Beltran AM, Gracia-Jimenez M (2009) Effects of air annealing on the optical, electrical, and structural properties of indium-tin oxide thin films. Thin Solid Films 517:4615–4620CrossRefGoogle Scholar
  29. 29.
    Zhang ZM (2007) Nano/microscale heat transfer. McGraw-Hill, New YorkGoogle Scholar
  30. 30.
    Paudel HP, Baroughi MF, Bayat K (2010) Plasmon resonance modes in two-dimensional arrays of metallic nanopillars. J Opt Soc Am B 27:1693–1697CrossRefGoogle Scholar
  31. 31.
    Langhammer C, Schwind M, Kasemo B, Zoric I (2008) Localized surface plasmon resonances in aluminum nanodisks. Nano Lett 8:1461–1471CrossRefGoogle Scholar
  32. 32.
    Lapsley MI, Shahravan A, Hao QZ, Juluri BK, Giardinelli S, Lu MQ, Zhao YH, Chiang IK, Matsoukas T, Huang TJ (2012) Shifts in plasmon resonance due to charging of a nanodisk array in argon plasma. Appl Phys Lett 100:101903CrossRefGoogle Scholar
  33. 33.
    Malola S, Lehtovaara L, Enkovaara J, Hakkinen H (2013) Birth of the localized surface plasmon resonance in mono layer-protected gold nanoclusters. ACS Nano 7:10263–10270CrossRefGoogle Scholar
  34. 34.
    Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yu-Bin Chen
    • 1
    Email author
  • Yung-Chun Lee
    • 1
  • Yu-Fan Chang
    • 1
  • Yao-Hua Lin
    • 1
  • Peng-Hsiang Chen
    • 1
  1. 1.Department of Mechanical EngineeringNational Cheng Kung UniversityTainan CityTaiwan

Personalised recommendations