Plasmonics

, Volume 10, Issue 2, pp 281–284 | Cite as

Experimental Demonstration of Reduced Light Absorption by Intracavity Metallic Layers in Tamm Plasmon-based Microcavity

  • M. A. Kaliteevski
  • A. A. Lazarenko
  • N. D. Il’inskaya
  • Yu. M. Zadiranov
  • M. E. Sasin
  • D. Zaitsev
  • V. A. Mazlin
  • P. N. Brunkov
  • S. I. Pavlov
  • A. Yu. Egorov
Article

Abstract

We demonstrate experimentally a microcavity based on SiO2/TiO2 with two gold layers directly attached to the central base of the microcavity. The design of optical modes based on the peculiarities of Tamm plasmons provides reduced absorption due to the fixing of the node of the electric field of optical mode to metallic layers. Experimentally measured reflection and transmission spectra exhibits three features, corresponding to three hybrid modes of the microcavity. The widths of spectral features confirm that absorption of light by metallic layers is vanishing for optimized mode. The latter is confirmed by resonant transmission of light through the structure. In case of the laser structure, two intracavity metallic layers could serve as contacts for electrical pumping.

Keywords

Plasmon Tamm plasmon Laser 

References

  1. 1.
    Kaliteevski M, Iorsh I, Brand S, Abram RA, Shelykh I, Kavokin AV (2007) Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B 76:165415CrossRefGoogle Scholar
  2. 2.
    Sasin ME, Seisyan RP, Kaliteevski M, Brand S, Abram RA, Chamberlain JM, Egorov AY, Vasil’ev AP, Mikhrin VS, Kavokin AV (2008) Tamm plasmon polaritons: slow and spatially compact light. Appl Phys Lett 92(25):251112CrossRefGoogle Scholar
  3. 3.
    Gazzano O, Michaelis de Vasconcellos S, Gauthron K et al (2011) Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. Phys Rev Lett 107:247402CrossRefGoogle Scholar
  4. 4.
    Symonds C, Lemaître A, Homeyer E, Plenet JC, Bellessa J (2009) Emission of Tamm plasmon/exciton polaritons. Appl Phys Lett 95:151114CrossRefGoogle Scholar
  5. 5.
    Symonds C, Lheureux G, Hugonin J et al (2013) Confined Tamm plasmon lasers. Nano Lett 13:3179CrossRefGoogle Scholar
  6. 6.
    Brückner R, Sudzius M, Hintischich SI et al (2012) Parabolic polarization splitting of Tamm states in a metal-organic microcavity. Appl Phys Lett 100:062101CrossRefGoogle Scholar
  7. 7.
    Brückner R, Zakhidov AA, Scholz R et al (2012) Phase-locked coherent modes in a patterned metal–organic microcavity. Nat Photonics 6(5):322–326CrossRefGoogle Scholar
  8. 8.
    Gazzano O, Michaelis de Vasconcellos S, Gauthron K, Lemaitre A, Senellart P et al (2012) Single photon source using confined Tamm plasmon modes. Appl Phys Lett 100:232111CrossRefGoogle Scholar
  9. 9.
    He C, Sun XC, Zhang Z, Yuan CS, Lu MH, Chen YF, Sun C (2013) Nonreciprocal resonant transmission/reflection based on a one-dimensional photonic crystal adjacent to the magneto-optical metal film. Opt Express 21:28922CrossRefGoogle Scholar
  10. 10.
    Lee KJ, Wu JW, Kihong K (2013) Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures. Opt Express 21:28817CrossRefGoogle Scholar
  11. 11.
    Liu H, Sun X, Yao F, Pei Y, Yuan H, Zhao H (2012) Controllable coupling of localized and propagating surface plasmons to Tamm plasmons. Plasmonics 7:749CrossRefGoogle Scholar
  12. 12.
    Kaliteevski MA, Lazarenko AA (2013) Reduced absorption of light by metallic intra-cavity contacts: Tamm plasmon based laser mode engineering. Tech Phys Lett 39(8):698–701CrossRefGoogle Scholar
  13. 13.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:(12)Google Scholar
  14. 14.
    Kaliteevski MA, Beggs DM, Brand S, Abram RA, Nikolaev VV (2006) Stability of the photonic band gap in the presence of disorder. Phys Rev B 73(3):033106Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. A. Kaliteevski
    • 1
    • 2
  • A. A. Lazarenko
    • 1
  • N. D. Il’inskaya
    • 2
  • Yu. M. Zadiranov
    • 2
  • M. E. Sasin
    • 2
  • D. Zaitsev
    • 2
  • V. A. Mazlin
    • 1
  • P. N. Brunkov
    • 2
    • 3
  • S. I. Pavlov
    • 2
  • A. Yu. Egorov
    • 1
  1. 1.St. Petersburg Academic UniversitySt. PetersburgRussia
  2. 2.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.National Research University of Information Technologies, Mechanics and Optics (ITMO)St. PetersburgRussia

Personalised recommendations