, Volume 9, Issue 6, pp 1257–1263 | Cite as

Optical Propagation Through Graded-Index Metamaterials in the Presence of Gain

  • Ivan D. Rukhlenko


We present a comparative theoretical study of electromagnetic wave propagation through randomly structured isotropic and stratified anisotropic active metamaterial slabs, whose refractive indices vary smoothly from positive values on one end of the slabs to negative values on the other. The chief advantage of our two configurations over recent hypothetical structures is that they can be made from real materials using common fabrication techniques. We find that even a small excess of gain (loss) in the randomly structured slab can result in a strong resonant amplification (absorption) of incident field on the length scale of an optical wavelength. This collective effect—somewhat similar to Landau amplification (damping) in a collisionless plasma—may prove useful in making compact optical amplifiers and perfect light absorbers.


Metamaterials Electromagnetic optics Subwavelength structures Effective medium theory All-optical devices 



This work was supported by the Australian Research Council through its Discovery Early Career Researcher Award DE120100055.


  1. 1.
    Zhu W, Rukhlenko ID, Premaratne M (2012) J Opt Soc Am B 29:2659CrossRefGoogle Scholar
  2. 2.
    Zhu W, Rukhlenko ID, Premaratne M (2012) IEEE Photonics J 4:741CrossRefGoogle Scholar
  3. 3.
    Premaratne M, Agrawal GP (2011) Light propagation in gain media: optical amplifiers, Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Veselago VG, Braginsky L, Shklover V, Hafner C (2006) J Comput Theor Nanosc 3:1Google Scholar
  5. 5.
    Ramakrishna SA (2005) Rep Prog Phys 68:449CrossRefGoogle Scholar
  6. 6.
    Zhu W, Rukhlenko ID, Huang Y, Wen G, Premaratne M (2013) J Opt 15:125101CrossRefGoogle Scholar
  7. 7.
    Rukhlenko ID, Premaratne M, Agrawal GP (2012) Adv OptoElectron 2012 (907183)Google Scholar
  8. 8.
    Rukhlenko ID, Premaratne M, Agrawal GP (2010) Opt Express 18:27916CrossRefGoogle Scholar
  9. 9.
    Zhu W, Rukhlenko ID, Si L-M, Premaratne M (2013) Appl Phys Lett 102:121911CrossRefGoogle Scholar
  10. 10.
    Zhu W, Rukhlenko ID, Premaratne M (2013) Appl Phys Lett 102:241914CrossRefGoogle Scholar
  11. 11.
    Zhu W, Huang Y, Rukhlenko ID, Wen G, Premaratne M (2012) Opt Express 20:6616CrossRefGoogle Scholar
  12. 12.
    Rukhlenko ID, Belov PA, Litchinitser NM, Boltasseva A (2012) Adv OptoElectron 2012 (514270)Google Scholar
  13. 13.
    Zhu W, Rukhlenko ID, Premaratne M (2012) Appl Phys Lett 101:031907CrossRefGoogle Scholar
  14. 14.
    Cai W, Shalaev V (2010) Optical metamaterials: fundamentals and applications. Springer, New YorkCrossRefGoogle Scholar
  15. 15.
    Mozjerin I, Gibson EA, Furlani EP, Gabitov IR, Litchinitser NM (2010) Opt Lett 35:3240CrossRefGoogle Scholar
  16. 16.
    Dalarsson M, Tassin P (2009) Opt Express 17:6747CrossRefGoogle Scholar
  17. 17.
    Litchinitser NM, Maimistov AI, Gabitov IR, Sagdeev RZ, Shalaev VM (2008) Opt Lett 33:2350CrossRefGoogle Scholar
  18. 18.
    Sihvola A (2009) Eur Phys J Appl Phys 46:32602(1CrossRefGoogle Scholar
  19. 19.
    Vinogradov AP, Dorofeenko AV, Zouhdi S (2008) Phys Usp 51:485CrossRefGoogle Scholar
  20. 20.
    Orlov AA, Voroshilov PM, Belov PA, Kivshar YS (2011) Phys Rev B 84:045424CrossRefGoogle Scholar
  21. 21.
    Wallen H, Kettunen H, Sihvola A (2009) Metamaterials and plasmonics: fundamentals, modelling, applications. Chap. mixing formulas and plasmonic composites. Springer, Netherlands, Dordrecht, pp 91–102CrossRefGoogle Scholar
  22. 22.
    Mackay TG, Lakhtakia A (2009) Opt Commun 282:2470CrossRefGoogle Scholar
  23. 23.
    Fourn C, Brosseau C (2008) Phys Rev E 77:016603CrossRefGoogle Scholar
  24. 24.
    Mackay TG, Lakhtakia A (2004) Opt Commun 234:35CrossRefGoogle Scholar
  25. 25.
    Gollub J, Hand T, Sajuyigbe S, Mendonca S, Cummer S, Smith DR (2007) Appl Phys Lett 91:162907CrossRefGoogle Scholar
  26. 26.
    Dykhne AM, Eksp Zh (1970) Teor Fiz 59:110Google Scholar
  27. 27.
    Baskin EM, Entin MV, Sarychev AK, Snarskii AA. (1997) Physica A 242:49CrossRefGoogle Scholar
  28. 28.
    Lifshitz EM, Pitaevskii LP (2002) Physical kinetics. Elsiver Butterworth-Heinemann, OxfordGoogle Scholar
  29. 29.
    Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of continuous media. Elsiver Butterworth-Heinemann, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Monash UniversityMelbourneAustralia
  2. 2.ITMO UniversitySaint PetersburgRussia

Personalised recommendations