, Volume 9, Issue 5, pp 1197–1205 | Cite as

Photothermal Switching of SOI Waveguide-Based Mach-Zehnder Interferometer with Integrated Plasmonic Nanoheater

  • Xi Chen
  • Yiting Chen
  • Yuechun Shi
  • Min Yan
  • Min QiuEmail author


We theoretically and numerically investigated the photothermal switching of a Mach-Zehnder interferometer (MZI) based on two Si waveguides integrated with plasmonic nanoheaters. The nanoheater is a composite nanowire with Au/Al2O3/Au three-layer structure, which is designed to have a highly efficient optical absorption peak at wavelength of 1,064 nm. Based on this finding, we further analyze a MZI built with two 40-μm-long symmetric waveguide branches, each integrated with a 20-μm-long nanoheater. The optical switching power of the MZI device is 190 mW (280 mW) for the capped (buried) channel waveguide, when pumped by a circular Gaussian beam with a waist of 10 μm. Alternatively, the switching power can be reduced to 38 mW (56 mW) by using an astigmatic Gaussian beam, with a semi-major axis of 10 μm and an aspect ratio of 5. The switching response time of the MZI is 0.7 μs (1.0 μs) for capped (buried) channel waveguide design. Our design opens a new route for optically driven non-contact optical on-off switching with sub-microsecond time response.


Photothermal effects Metamaterial absorber Optical switching devices Mach-Zehnder interferometer Silicon-on-insulator strip waveguide 



The authors thank Fei Lou (KTH Royal Institute of Technology) for the fruitful discussion. This work is supported by the Swedish Foundation for Strategic Research (SSF), the Swedish Research Council (VR), and VR’s Linnaeus center in Advanced Optics and Photonics (ADOPT). Min Qiu is also supported by the National Natural Science Foundation of China (Grant Nos. 61275030, 61205030, and 61235007).


  1. 1.
    Liao L, Liu A, Basak J, Nguyen H, Paniccia M, Rubin D, Chetrit Y, Cohen R, Izhaky N (2007) 40 Gbit/s silicon optical modulator for high speed applications. Electron Lett 43:22CrossRefGoogle Scholar
  2. 2.
    Cocorullo G, Della Corte FG, Rendina I (1999) Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl Phys Lett 74:3338–3340CrossRefGoogle Scholar
  3. 3.
    Treyz G (1991) Silicon Mach-Zehnder waveguide interferometers operating at 1.3 μm. Electron Lett 27:118–120CrossRefGoogle Scholar
  4. 4.
    Harjanne M, Kapulainen M, Aalto T, Heimala P (2004) Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch. IEEE Photonics Technol Lett 16:2039–2041CrossRefGoogle Scholar
  5. 5.
    Geis M, Spector S, Williamson R, Lyszczarz T (2004) Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photonics Technol Lett 16:2514–2516CrossRefGoogle Scholar
  6. 6.
    Gan F, Barwicz T, Popovic MA, Dahlem MS, Holzwarth CW, Rakich PT, Smith HI, Ippen EP, Kartner FX (2007) Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures. Proceedings of Photonics in Switching 67–68Google Scholar
  7. 7.
    Densmore A, Janz S, Ma R, Schmid JH, Xu D-X, Delâge A, Lapointe J, Vachon M, Cheben P (2009) Compact and low power thermo-optic switch using folded silicon waveguides. Opt Express 17:13CrossRefGoogle Scholar
  8. 8.
    Sun P, Reano RM (2010) Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt Express 18:8Google Scholar
  9. 9.
    Shoji Y, Kintaka K, Suda S, Kawashima H, Hasama T, Ishikawa H (2010) Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides. Opt Express 18:9Google Scholar
  10. 10.
    Hashizume Y, Katayose S, Tsuchizawa T, Watanabe T, Itoh M (2012) Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures. Electron Lett 48:19CrossRefGoogle Scholar
  11. 11.
    Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham JE, Krishnamoorthy AV, Asghari M (2010) Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt Express 18:19Google Scholar
  12. 12.
    Watts MR, Zortman WA, Trotter DC, Nielson GN, Luck DL, Young RW (2009) “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. Optical Society of America CPDB10Google Scholar
  13. 13.
    Watts MR, Sun J, DeRose C, Trotter DC, Young RW, Nielson GN (2013) Adiabatic thermo-optic Mach-Zehnder switch. Opt Lett 38:5CrossRefGoogle Scholar
  14. 14.
    Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96:251104CrossRefGoogle Scholar
  15. 15.
    Baffou G, Quidant R, Garcia de Abajo FJ (2010) Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4:709–716CrossRefGoogle Scholar
  16. 16.
    Chen X, Chen Y, Yan M, Qiu M (2012) Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6:2550–2557CrossRefGoogle Scholar
  17. 17.
    Yan M (2013) Metal-insulator-metal light absorber: a continuous structure. J of Optics 15:025006CrossRefGoogle Scholar
  18. 18.
    Shalaev VM (2007) Optical negative-index metamaterials. Nat Photon 1:41–48CrossRefGoogle Scholar
  19. 19.
    Liu X, Starr T, Starr AF, Padilla WJ (2010) Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys Rev Lett 104:207403CrossRefGoogle Scholar
  20. 20.
    Hao J, Zhou L, Qiu M (2011) Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys Rev B 83:165107CrossRefGoogle Scholar
  21. 21.
    Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152–6163CrossRefGoogle Scholar
  22. 22.
    Vlasov Y, McNab S (2004) Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt Express 12:1622–1631CrossRefGoogle Scholar
  23. 23.
    Della Corte FG, Montefusco ME, Moretti L, Rendina I, Cocorullo G (2000) Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models. J Appl Phys 88:7115–7119CrossRefGoogle Scholar
  24. 24.
    Arnaud JA, Kogelnik H (1969) Gaussian light beams with general astigmatism. Appl Opt 8:1687–1693CrossRefGoogle Scholar
  25. 25.
    Nissim YI, Lietoila A, Gold RB, Gibbons JF (1980) Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam. J Appl Phys 51:274–279CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xi Chen
    • 1
  • Yiting Chen
    • 1
  • Yuechun Shi
    • 1
    • 2
  • Min Yan
    • 1
  • Min Qiu
    • 1
    • 3
    Email author
  1. 1.Optics and Photonics, School of Information and Communication TechnologyKTH Royal Institute of TechnologyStockholmSweden
  2. 2.Microwave-Photonics Technology Laboratory, Nanjing National Laboratory of Microstructures and School of Engineering and Applied SciencesNanjing UniversityNanjingChina
  3. 3.State Key Laboratory of Modern Optical Instrumentation, Department of Optical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations