, Volume 9, Issue 3, pp 659–672 | Cite as

Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres

  • Debabrata Sikdar
  • Ivan D. Rukhlenko
  • Wenlong Cheng
  • Malin Premaratne


Using the image charge theory and finite element methods, we present the first comprehensive study on the optical properties of substrate-supported, three-layer, metal/dielectric/metal nanospheres. By adopting dipolar and quadrupolar approximations of the quasistatic image charge theory, we derive analytical expressions for the polarization-dependent polarizabilities of a three-layer nanosphere near a substrate and use them to find the nanosphere’s plasmon resonance wavelengths as functions of the geometric and material parameters of the nanosphere–substrate system. By calculating the resonance wavelength of substrate-supported gold/silica/gold nanosphere over a sufficiently large domain of the nanosphere’s dimensions, we show that this wavelength can be tuned from visible to infrared regions by altering only the size of the nanosphere’s core. We also show that the resonance position as well as the enhancement and confinement of the near-field can be dynamically tuned over broad ranges by changing the polarization of the excitation light. Of significance for the applicability of our results in practice is that we employ size-dependent permittivity of gold, which allows experimentalists to readily produce these substrate-supported nanospheres with desired optical responses. Upon comparing our analytical results with the results of numerical simulations, we reveal the range of the nanospheres’ outer radii within which the dipolar and quadrupolar approximations adequately describe the nanosphere–substrate interaction. Since majority of the optical functions are realized with light polarized parallel to the substrate, our results allow one to readily engineer the broadband optical responses of substrate-supported metal/dielectric/metal nanospheres for applications in resonance-enhanced sensing, in light harvesting, and in biomedicine.


Surface plasmon resonance Metal/dielectric/metal nanospheres Substrate interaction Absorption cross section Quasistatic image charge theory Dynamic tunability 



The work of DS is supported by Victoria India Doctoral Scholarship. The work of IDR, WC, and MP is supported by the Australian Research Council, through its Discovery Early Career Researcher Award DE120100055 and Discovery Grants DP120100170 and DP110100713, respectively.


  1. 1.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Khan AD, Miano G (2013) Higher order tunable Fano resonances in multilayer nanocones. Plasmonics 8(2):1023–1034CrossRefGoogle Scholar
  3. 3.
    Handapangoda D, Rukhlenko ID, Premaratne M (2012) Optimizing the design of planar heterostructures for plasmonic waveguiding. J Opt Soc Am B 29(4):553–558CrossRefGoogle Scholar
  4. 4.
    Yong KT, Swihart MT, Ding H, Prasad PN (2009) Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging. Plasmonics 4(2):79–93CrossRefGoogle Scholar
  5. 5.
    Erickson TA, Tunnell JW (2009) Gold nanoshells in biomedical applications. In: Kumar CSSR (ed) Nanomaterials for the life sciences, mixed metal nanomaterials, vol 3. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–44Google Scholar
  6. 6.
    Udagedara IB, Rukhlenko ID, Premaratne M (2011) Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout. Opt Express 19(21):19973–19986CrossRefGoogle Scholar
  7. 7.
    Acevedo R, Lombardini R, Halas NJ, Johnson BR (2009) Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells. J Phys Chem A 113(47):13173–13183CrossRefGoogle Scholar
  8. 8.
    Pannipitiya A, Rukhlenko ID, Premaratne M (2011) Analytical theory of optical bistability in plasmonic nanoresonators. J Opt Soc Am B 28(11):2820–2826CrossRefGoogle Scholar
  9. 9.
    Major KJ, De C, Obare SO (2009) Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics 4(1):61–78CrossRefGoogle Scholar
  10. 10.
    Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2013) Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. Biom Opt Express 4(1):15–31CrossRefGoogle Scholar
  11. 11.
    Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2013) Optimized gold nanoshell ensembles for biomedical applications. Nanoscale Res Lett 8(1):142–146CrossRefGoogle Scholar
  12. 12.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2(3):107–118CrossRefGoogle Scholar
  13. 13.
    Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1(1):5–33CrossRefGoogle Scholar
  14. 14.
    Zhu J, Ren Y, Zhao S, Zhao J (2012) The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell. Mater Chem Phys 133(2):1060–1065CrossRefGoogle Scholar
  15. 15.
    Wu D, Jiang S, Liu X (2011) Tunable Fano resonances in three-layered bimetallic Au and Ag nanoshell. J Phys Chem C 115(48):23797–23801CrossRefGoogle Scholar
  16. 16.
    Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold–silica–gold multilayer nanoshells. Opt Exp 16(24):19579–19591CrossRefGoogle Scholar
  17. 17.
    Wu D, Xu X, Liu X (2008) Tunable near-infrared optical properties of three-layered metal nanoshells. J Chem Phys 129(7):074711CrossRefGoogle Scholar
  18. 18.
    Xia X, Liu Y, Backman V, Ameer GA (2006) Engineering sub-100 nm multi-layer nanoshells. Nanotechnol 17(21):5435–5440CrossRefGoogle Scholar
  19. 19.
    Hutter T, Elliott SR, Mahajan S (2013) Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants. Nanotechnol 24(3):035201CrossRefGoogle Scholar
  20. 20.
    Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663CrossRefGoogle Scholar
  21. 21.
    Jian Z, Jian-jun L, Jun-wu Z (2011) Tuning the dipolar plasmon hybridization of multishell metal–dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6(3):527–534CrossRefGoogle Scholar
  22. 22.
    Chau YF, Jiang ZH (2011) Plasmonics effects of nanometal embedded in a dielectric substrate. Plasmonics 6(3):581–589CrossRefGoogle Scholar
  23. 23.
    Wu Y, Nordlander P (2010) Finite-difference time-domain modeling of the optical properties of nanoparticles near dielectric substrates. J Phys Chem C 114(16):7302–7307CrossRefGoogle Scholar
  24. 24.
    Knight MW, Wu Y, Lassiter JB, Nordlander P, Halas NJ (2009) Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett 9(5):2188–2192CrossRefGoogle Scholar
  25. 25.
    Chen F, Johnston RL (2009) Plasmonic properties of silver nanoparticles on two substrates. Plasmonics 4(2):147–152CrossRefGoogle Scholar
  26. 26.
    Pinchuk A, Schatz G (2005) Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate. Nanotechnol 16(10):2209–2217CrossRefGoogle Scholar
  27. 27.
    Pinchuk A, Hilger A, Von Plessen G, Kreibig U (2004) Substrate effect on the optical response of silver nanoparticles. Nanotechnol 15(12):1890–1896CrossRefGoogle Scholar
  28. 28.
    Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J Phys Chem B 105(12):2343–2350CrossRefGoogle Scholar
  29. 29.
    Vernon KC, Funston AM, Novo C, Gomez DE, Mulvaney P, Davis TJ (2010) Influence of particle–substrate interaction on localized plasmon resonances. Nano Lett 10(6):2080–2086CrossRefGoogle Scholar
  30. 30.
    Gozhenko VV, Grechko LG, Whites KW (2003) Electrodynamics of spatial clusters of spheres: substrate effects. Phys Rev B 68(12):125422CrossRefGoogle Scholar
  31. 31.
    Ruppin R (1991) Optical absorption of a coated sphere above a substrate. Phys A 178(1):195–205CrossRefGoogle Scholar
  32. 32.
    Wind MM, Vlieger J, Bedeaux D (1987) The polarizability of a truncated sphere on a substrate I. Phys A 141(1):33–57CrossRefGoogle Scholar
  33. 33.
    Yamaguchi T, Yoshida S, Kinbara A (1974) Optical effect of the substrate on the anomalous absorption of aggregated silver films. Thin Solid Films 21(1):173–187CrossRefGoogle Scholar
  34. 34.
    Bedeaux D, Vlieger J (2004) Optical properties of surfaces. Imperial College Press, LondonCrossRefGoogle Scholar
  35. 35.
    Albella P, Garcia-Cueto B, Gonzalez F, Moreno F, Wu PC, Kim T, Brown A, Yang Y, Everitt HO, Videen G (2011) Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate. Nano Lett 11(9):3531–3537CrossRefGoogle Scholar
  36. 36.
    Valamanesh M, Borensztein Y, Langlois C, Lacaze E (2011) Substrate effect on the plasmon resonance of supported flat silver nanoparticles. J Phys Chem C 115(7):2914–2922CrossRefGoogle Scholar
  37. 37.
    Le F, Lwin N, Halas N, Nordlander P (2007) Plasmonic interactions between a metallic nanoshell and a thin metallic film. Phys Rev B 76(16):165410CrossRefGoogle Scholar
  38. 38.
    Roman-Velazquez CE, Noguez C, Barrera RG (2000) Substrate effects on the optical properties of spheroidal nanoparticles. Phys Rev B 61(15):10427–10436CrossRefGoogle Scholar
  39. 39.
    Yamamoto N, Ohtani S, Garcia de Abajo FJ (2010) Gap and mie plasmons in individual silver nanospheres near a silver surface. Nano letters 11(1):91–95CrossRefGoogle Scholar
  40. 40.
    Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16(10):1824–1832CrossRefGoogle Scholar
  41. 41.
    Roman-Velazquez CE, Noguez C (2011) Designing the plasmonic response of shell nanoparticles: spectral representation. J Chem Phys 134:044116CrossRefGoogle Scholar
  42. 42.
    Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2013) Unveiling ultrasharp scattering–switching signatures of layered gold–dielectric–gold nanospheres. J Opt Soc Am B 30(8):2066–2074CrossRefGoogle Scholar
  43. 43.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379CrossRefGoogle Scholar
  44. 44.
    Xiong W, Sikdar D, Walsh M, Si K, Tang Y, Chen Y, Mazid R, Weyland M, Rukhlenko ID, Etheridge J, Premaratne M, Lia X, Cheng W (2013) Single-crystal caged gold nanorods with tunable broadband plasmon resonances. Chem Commun 49:9630–9632CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Debabrata Sikdar
    • 1
  • Ivan D. Rukhlenko
    • 1
    • 2
  • Wenlong Cheng
    • 3
    • 4
  • Malin Premaratne
    • 1
  1. 1.Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems EngineeringMonash UniversityClaytonAustralia
  2. 2.Saint Petersburg National Research, University of Information Technologies, Mechanics and OpticsSaint PetersburgRussia
  3. 3.Department of Chemical Engineering, Faculty of EngineeringMonash UniversityVictoriaAustralia
  4. 4.The Melbourne Centre for NanofabricationVictoriaAustralia

Personalised recommendations