, Volume 9, Issue 3, pp 651–657 | Cite as

Tunable Properties of Surface Plasmon Resonances: The Influence of Core–Shell Thickness and Dielectric Environment

  • Nilesh Kumar Pathak
  • Alok Ji
  • R. P. Sharma


In the present study, we have investigated the extinction spectra of coated sphere (using dipole model) with different core–shell radius, in which the core is TiO2 and the shell is made up of silver or gold nanoparticles. Nanoparticles exhibit surface plasmon resonance peak; these plasmonic peaks are highly tunable in wavelength range of 300 to 1,100 nm; in fact, the blue and red shifting of resonance peak highly depends on the core–shell thickness. The broadness of resonance peaks are analysed in terms of full width at half maxima (FWHM), and the width of these resonance peaks is also the function of core–shell radius.


Core–shell geometry Surface plasmon resonance Noble metal nanoparticle and extinction spectra 



This research is financially supported by MNRE India.


  1. 1.
    Homola J (2008) Chem Rev 108:462–493CrossRefGoogle Scholar
  2. 2.
    Dostalek J, Knoll W (2008) Biointerphases 3:12–22CrossRefGoogle Scholar
  3. 3.
    Hutter E, Fendler JH (2004) Adv Mater 16:1685–1706CrossRefGoogle Scholar
  4. 4.
    Catchpole KR, Polman A (2008) Opt Express 6:21793–21800CrossRefGoogle Scholar
  5. 5.
    Sangita AJ, Sharma RP (2012) J Phys D Appl Phys 45:275101–25107CrossRefGoogle Scholar
  6. 6.
    Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ (2008) Chem Soc Rev 37:898–911CrossRefGoogle Scholar
  7. 7.
    Willets KA, Van Duyne RP (2007) Annu Rev Phys Chem 58:267–97CrossRefGoogle Scholar
  8. 8.
    Nilesh K, Pathak Alok Ji, R. P. Sharma (2013). Appl Phy A. doi:  10.1007/s00339-013-8061-0
  9. 9.
    Matthew J, Lane D, Grest GS (2010) Phy Rev Lett 104:235501–235504CrossRefGoogle Scholar
  10. 10.
    Niesen B, Rand BP, Van Dorpe P, Shen HH, Maes B, Genoe J, Heremans P (2010) Opt Express 18:19032–19038CrossRefGoogle Scholar
  11. 11.
    Ruppin Surface R (1975) Science 51:140–148Google Scholar
  12. 12.
    Lim SK, Chung KJ, Kim CK, Shin DW, Kim YH, Yoon CS. J. Appl. Phys.98 (2005) 084309Google Scholar
  13. 13.
    Biswas A, Aktas OC, Schurmann U, Saeed U, Zaporojtchenko V, Faupel F, Strunskus T (2004) Appl Phys Lett 84:2655CrossRefGoogle Scholar
  14. 14.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668CrossRefGoogle Scholar
  15. 15.
    Alok Ji, Sharma, Kumari A, Pathak NK (2013) Plasmonics. Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, India, 7 ppGoogle Scholar
  16. 16.
    Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, OrlandoGoogle Scholar
  17. 17.
    Zheng YB, Huang TJ, Desai AY, Wang SJ, Tan LK, Gao H, Huan ACH (2007) Appl Phys Lett 90:18311Google Scholar
  18. 18.
    Maier S (2007) Plasmonics: fundamentals and applications. Springer, BerlinGoogle Scholar
  19. 19.
    Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New YorkGoogle Scholar
  20. 20.
    Bohren C, Huffmann D (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  21. 21.
    Noguez CJ (2007) Phys Chem C 111:3806CrossRefGoogle Scholar
  22. 22.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  23. 23.
    Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6(12):4370–4379CrossRefGoogle Scholar
  24. 24.
    Gabudean AM et al (2011) Opt Mater 33:1377–1381CrossRefGoogle Scholar
  25. 25.
    viste A, Plain JR, Jaffiol R, Vial A, Adam PM, Royer P (2010) ACS Nano 4:759–764CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Centre for Energy StudiesIndian Institute of TechnologyDelhiIndia

Personalised recommendations