Plasmonics

, Volume 9, Issue 3, pp 645–649 | Cite as

Aluminum Nanohole Arrays Fabricated on Polycarbonate for Compact Disc-Based Label-Free Optical Biosensing

  • C. A. Barrios
  • V. Canalejas-Tejero
  • S. Herranz
  • M. C. Moreno-Bondi
  • M. Avella-Oliver
  • R. Puchades
  • A. Maquieira
Article

Abstract

Al nanohole array plasmonic biosensors have been fabricated on polycarbonate (PC) substrates from conventional compact discs (CD). Standard micro and nanofabrication processes have been used and optimized to be PC compatible. The viability of this CD-based plasmonic platform for label-free optical biosensing has been demonstrated through a competitive bioassay for biotin analysis using biotin-functionalized dextran-lipase conjugates immobilized on the transducer surface.

Keywords

Surface plasmon Optical biosensor Nanofabrication Aluminum Polycarbonate 

References

  1. 1.
    Tanious FA, Nguyen B, Wilson WD (2008) Biosensor-surface plasmon resonance methods for quantitative analysis of biomolecular interactions. In: Methods in cell biology. biophysical tools for biologists. Edit. Correia JJ and Detrich HW, III. Volume 84, Chapter 3, pp 53–77Google Scholar
  2. 2.
    Schasfoort RBM, Tudos AJ (2008) Handbook of surface plasmon resonance. The Royal Society of Chemistry, CambridgeCrossRefGoogle Scholar
  3. 3.
    Lindquist NC, Nagpal P, McPeak KM, Norris DJ, Oh SH (2012) Engineering metallic nanostructures for plasmonics and nanophotonics. Rep Prog Phys 75:036501CrossRefGoogle Scholar
  4. 4.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  5. 5.
    Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815CrossRefGoogle Scholar
  6. 6.
    Dahlin A, Zäch M, Rindzevicius T, Käll M, Sutherland DS, Höök F (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc 127:5043–5048CrossRefGoogle Scholar
  7. 7.
    Yang JC, Ji J, Hogle JM, Larson DN (2009) Multiplexed plasmonic sensing based on small-dimension nanohole arrays. Biosens Bioelectron 24:2334–2338CrossRefGoogle Scholar
  8. 8.
    Erickson JS, Ligler FS (2008) Analytical chemistry: home diagnostic to music. Nature 456:178–179CrossRefGoogle Scholar
  9. 9.
    Bañuls MJ, González-Pedro V, Puchades R, Maquieira A (2007) PMMA isocyonate modified digital discs as a support for oligonucleotide-based assays. Bioconjugate Chem 18:1408–1414CrossRefGoogle Scholar
  10. 10.
    Challener WA, Ollmann RR, Kam KK (1999) A surface plasmon resonance gas sensor in a ‘compact disc’ format. Sensors Actuators B 54:254–258CrossRefGoogle Scholar
  11. 11.
    Dou X, Phillips BM, Chung PY, Jiang P (2012) High surface plasmon resonance sensitivity enabled by optical disks. Opt Lett 37:3681–3683CrossRefGoogle Scholar
  12. 12.
    Herranz S, Marciello M, Olea D, Hernández M, Domingo C, Vélez M, Gheber LA, Guisán JM, Moreno-Bondi MC (2013) Dextran-lipase conjugates as tools for low molecular weight ligand immobilization in microarray development. Anal Chem 85:7060–7068CrossRefGoogle Scholar
  13. 13.
    Rodrigo SG, García-Vidal FJ, Martín-Moreno L (2008) Influence of material properties on extraordinary optical transmission through hole arrays. Phys Rev B 77:075401CrossRefGoogle Scholar
  14. 14.
    Canalejas-Tejero V, Herranz S, Bellingham A, Moreno-Bondi MC, Barrios CA (2014) Passivated aluminum nanohole arrays for label-free biosensing applications. ACS Appl Mater Interfaces 6:1005–1010CrossRefGoogle Scholar
  15. 15.
    Foquet M, Samiee KT, Kong X, Chauduri BP, Lundquist PM, Turner SW, Freudenthal J, Roitman DB (2008) Improved fabrication of zero-mode waveguides for single-molecule detection. J Appl Phys 103:034301CrossRefGoogle Scholar
  16. 16.
    Chen Q, Martin C, Cumming DRS (2012) Transfer printing of nanoplasmonic devices onto flexible polymer substrates from a rigid stamp. Plasmonics 7:755–761CrossRefGoogle Scholar
  17. 17.
    Fang Z, Lin C, Ma R, Huang S, Zhu X (2010) Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano 4:75–82CrossRefGoogle Scholar
  18. 18.
    Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, de García Abajo FJ (2013) Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7:2388–2395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • C. A. Barrios
    • 1
  • V. Canalejas-Tejero
    • 1
  • S. Herranz
    • 2
  • M. C. Moreno-Bondi
    • 2
  • M. Avella-Oliver
    • 3
  • R. Puchades
    • 3
  • A. Maquieira
    • 3
  1. 1.Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM), ETSI TelecomunicaciónUniversidad Politécnica de MadridMadridSpain
  2. 2.Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Analytical Chemistry, Faculty of ChemistryUniversidad ComplutenseMadridSpain
  3. 3.IDM Departamento de QuímicaUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations