, Volume 9, Issue 3, pp 623–630 | Cite as

Photothermal Enhancement in Core-Shell Structured Plasmonic Nanoparticles

  • Qiang LiEmail author
  • Weichun Zhang
  • Ding Zhao
  • Min QiuEmail author


Plasmonic nanoparticles (NPs) with photothermal effects can be exploited as efficient heat sources in various applications. Here, the photothermal properties in core-shell structured plasmonic NPs, including metal/silica NP, silica/metal NP, and metal/silica/metal NP, are investigated. Compared with bare metal NPs, the core-shell plasmonic NPs not only exhibit extremely agile tunability in the surface plasmon resonances but also show considerably enhanced photothermal effects in terms of the maximum temperature rise. For metal/silica NPs and metal/silica/metal NPs, the SiO2 shells function as effective thermal-protective layers for enhanced photothermal effect. For silica/metal NPs, the SiO2 core and the metal shell show uniform temperature rise. These findings are essential for applying the core-shell structured plasmonic NPs on photothermal imaging, nanofluidics, etc.


Plasmonics Core-shell nanoparticle Photothermal effect 



This work is supported by the National Natural Science Foundation of China (grant nos. 61275030, 61205030, and 61235007), the Qianjiang River Fellow Fund of Zhejiang Province, the Scientific Research Foundation for the Returned Overseas Chinese Scholars from the State Education Ministry, the Opened Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks, the Fundamental Research Funds for the Central Universities, Doctoral Fund of Ministry of Education of China (grant no 20120101120128), the Swedish Foundation for Strategic Research (SSF), and the Swedish Research Council (VR).


  1. 1.
    Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433CrossRefGoogle Scholar
  2. 2.
    Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934CrossRefGoogle Scholar
  3. 3.
    Baffou G, Kreuzer MP, Kulzer F, Quidant R (2009) Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt Express 17:3291–3298CrossRefGoogle Scholar
  4. 4.
    Zijlstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410–413CrossRefGoogle Scholar
  5. 5.
    Donner JS, Baffou G, McCloskey D, Quidant R (2011) Plasmon-assisted optofluidics. ACS Nano 5:5457–5462CrossRefGoogle Scholar
  6. 6.
    Juan ML, Righini M, Quidant R (2011) Plasmon nano-optical tweezers. Nat Photonics 5:349–356CrossRefGoogle Scholar
  7. 7.
    Weeber JC, Hassan K, Saviot L, Dereux A, Boissière C, Durupthy O, Chaneac C, Burov E, Pastouret A (2012) Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches. Opt Express 20:27636–27649CrossRefGoogle Scholar
  8. 8.
    Chen X, Chen Y, Yan M, Qiu M (2012) Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6:2550–2557CrossRefGoogle Scholar
  9. 9.
    Zhang W, Li Q, Qiu M (2013) A plasmon ruler based on nanoscale photothermal effect. Opt Express 21:172–181CrossRefGoogle Scholar
  10. 10.
    Chen X, Chen Y, Dai J, Yan Y, Zhao Z, Li Q, Qiu M (2014) Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing. Nanoscale. doi: 10.1039/C3NR05745C Google Scholar
  11. 11.
    Li Q, Zhang W, Zhao H, Qiu M (2013) Two-dimensional analysis photothermal properties in nanoscale plasmonic waveguides for optical interconnect. J Lightwave Technol 31:4051–4056CrossRefGoogle Scholar
  12. 12.
    Baffou G, Quidant R, de Abajo FJG (2010) Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4:709–716CrossRefGoogle Scholar
  13. 13.
    Baffou G, Quidant R, Girard C (2009) Heat generation in plasmonic nanostructures: influence of morphology. Appl Phys Lett 94:153109CrossRefGoogle Scholar
  14. 14.
    Rodríguez-Oliveros R, Sánchez-Gil JA (2012) Gold nanostars as thermoplasmonic nanoparticles for optical heating. Opt Express 20:621–626CrossRefGoogle Scholar
  15. 15.
    Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev 7:171–187CrossRefGoogle Scholar
  16. 16.
    Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16:1824–1832CrossRefGoogle Scholar
  17. 17.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  18. 18.
    Qiu TQ, Tien CL (1993) Size effects on nonequilibrium laser heating of metal films. J Heat Transf 115:842–847CrossRefGoogle Scholar
  19. 19.
    Chen G, Hui P (1999) Thermal conductivities of evaporated gold films on silicon and glass. Appl Phys Lett 74:2942–2944CrossRefGoogle Scholar
  20. 20.
    Gaponenko SV (2010) Introduction to nanophotonics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. 21.
    Bergman TL, Lavine AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley, New YorkGoogle Scholar
  22. 22.
    Yamane T, Nagai N, Katayama SI, Todoko M (2002) Measurement of thermal conductivity of silicon dioxide thin films using a 3v method. J Appl Phys 91:9772–9776CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Modern Optical Instrumentation, Department of Optical EngineeringZhejiang UniversityHangzhouChina
  2. 2.School of Information and Communication TechnologyRoyal Institute of TechnologyKistaSweden

Personalised recommendations