, Volume 9, Issue 4, pp 801–807 | Cite as

Multiplexed Biomolecular Detection Based on Single Nanoparticles Immobilized on Pneumatically Controlled Microfluidic Chip

  • Bo Wu
  • Li-Chan Chen
  • Youju Huang
  • Yiming Zhang
  • Yuejun Kang
  • Dong-Hwan KimEmail author


A microfluidic chip integrated with pneumatically controlled valves was developed for multiplexed biomolecular detection via localized surface plasmonic resonance (LSPR) of single gold nanorod. The cost-effective microfluidic chip was assembled by polydimethylsiloxane layers and glass substrates with a precisely controlled thickness. The thin and flat microfluidic chip fitted the narrow space of dark-field microscopy and enabled the recording of single-nanoparticle LSPR responses. Aptamer-antigen-antibody sandwiched detection scheme was utilized to enhance the LSPR responses for label-free biomolecular detection. This microfluidic chip successfully demonstrated the multiplexed detection of three independent analytes (PSA, IgE, and thrombin).


LSPR Single nanoparticle Multiplex Microfluidic chip 



We gratefully thank financial support from the Ministry of Education of Singapore (MOE2012-T2-1-058).

Supplementary material

11468_2013_9661_MOESM1_ESM.docx (3.2 mb)
ESM 1 (DOCX 3,285 kb)


  1. 1.
    Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1(1):18–52Google Scholar
  2. 2.
    Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40(22):4128–4158CrossRefGoogle Scholar
  3. 3.
    Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based Bio-Bar codes for the ultrasensitive detection of proteins. Science 301(5641):1884–1886CrossRefGoogle Scholar
  4. 4.
    Agasti SS et al (2010) Nanoparticles for detection and diagnosis. Adv Drug Deliv Rev 62(3):316–328CrossRefGoogle Scholar
  5. 5.
    Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706CrossRefGoogle Scholar
  6. 6.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  7. 7.
    Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37(9):2028–2045CrossRefGoogle Scholar
  8. 8.
    Sperling RA et al (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908CrossRefGoogle Scholar
  9. 9.
    Zhao W, Brook MA, Li YF (2008) Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem 9(15):2363–2371CrossRefGoogle Scholar
  10. 10.
    Giljohann DA et al (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294CrossRefGoogle Scholar
  11. 11.
    Hubble LJ et al (2012) Gold nanoparticle chemiresistors operating in biological fluids. Lab Chip 12(17):3040–3048CrossRefGoogle Scholar
  12. 12.
    Ozhikandathil J, Badilescu S, Packirisamy M (2012) Gold nanoisland structures integrated in a lab-on-a-chip for plasmonic detection of bovine growth hormone. J Biomed Opt 17(7):077011–0770019CrossRefGoogle Scholar
  13. 13.
    Zhang Y et al (2012) Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics. Lab Chip 12(17):3012–3015CrossRefGoogle Scholar
  14. 14.
    Hiep HM et al (2007) A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Sci Technol Adv Mater 8(4):331–338CrossRefGoogle Scholar
  15. 15.
    Huang CJ et al (2009) Localized surface plasmon resonance biosensor integrated with microfluidic chip. Biomed Microdevices 11(4):893–901CrossRefGoogle Scholar
  16. 16.
    Guo LH, Kim DH (2012) LSPR biomolecular assay with high sensitivity induced by aptamer-antigen-antibody sandwich complex. Biosens Bioelectron 31(1):567–570CrossRefGoogle Scholar
  17. 17.
    Guo L (2013) Distance-mediated plasmonic dimers for reusable colorimetric switches: a measurable peak shift of over 60 nm. Small 9(2):234–240Google Scholar
  18. 18.
    Guo L, Kim D-H (2011) Reusable plasmonic aptasensors: using a single nanoparticle to establish a calibration curve and to detect analytes. Chem Commun 47(25):7125–7127CrossRefGoogle Scholar
  19. 19.
    Nusz GJ et al (2008) Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem 80(4):984–989CrossRefGoogle Scholar
  20. 20.
    Nusz GJ et al (2009) Rational selection of gold nanorod geometry for label-free plasmonic biosensors. Acs Nano 3(4):795–806CrossRefGoogle Scholar
  21. 21.
    Truong PL et al (2011) A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor. Lab Chip 11(15):2591–2597CrossRefGoogle Scholar
  22. 22.
    Guo LH et al (2011) In situ assembly, regeneration and plasmonic immunosensing of a Au nanorod monolayer in a closed-surface flow channel. Lab Chip 11(19):3299–3304CrossRefGoogle Scholar
  23. 23.
    Hiep HM et al (2008) A microfluidic chip based on localized surface plasmon resonance for real-time monitoring of antigen-antibody reactions. Jpn J Appl Phys 47(2):1337–1341CrossRefGoogle Scholar
  24. 24.
    Geng ZX et al Theoretical analysis and fabrication of PDMS-based surface plasmon resonance sensor chips. 2009 4th Ieee International Conference on Nano/Micro Engineered and Molecular Systems, Vols 1 and 2. 2009, New York: Ieee. 51–54Google Scholar
  25. 25.
    Luo Y et al (2011) Superlocalization of single molecules and nanoparticles in high-fidelity optical imaging microfluidic devices. Anal Chem 83(13):5073–5077CrossRefGoogle Scholar
  26. 26.
    Unger MA et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116CrossRefGoogle Scholar
  27. 27.
    Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584CrossRefGoogle Scholar
  28. 28.
    Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13(18):1389–1393CrossRefGoogle Scholar
  29. 29.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962CrossRefGoogle Scholar
  30. 30.
    Guo LH, Zhou XD, Kim DH (2011) Facile fabrication of distance-tunable Au-nanorod chips for single-nanoparticle plasmonic biosensors. Biosens Bioelectron 26(5):2246–2251CrossRefGoogle Scholar
  31. 31.
    Tombelli S, Minunni A, Mascini A (2005) Analytical applications of aptamers. Biosens Bioelectron 20(12):2424–2434CrossRefGoogle Scholar
  32. 32.
    Bunka DHJ, Stockley PG (2006) Aptamers come of age—at last. Nat Rev Microbiol 4(8):588–596CrossRefGoogle Scholar
  33. 33.
    Willner I, Zayats M (2007) Electronic aptamer-based sensors. Angew Chem Int Ed 46(34):6408–6418CrossRefGoogle Scholar
  34. 34.
    Liu JW, Cao ZH, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998CrossRefGoogle Scholar
  35. 35.
    Guo LH et al (2011) Nanoarray-based biomolecular detection using individual Au nanoparticles with minimized localized surface plasmon resonance variations. Anal Chem 83(7):2605–2612CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Bo Wu
    • 1
  • Li-Chan Chen
    • 1
  • Youju Huang
    • 1
  • Yiming Zhang
    • 1
  • Yuejun Kang
    • 1
  • Dong-Hwan Kim
    • 1
    Email author
  1. 1.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations