, Volume 9, Issue 4, pp 729–735 | Cite as

Ambiguous Refractive Index Sensitivity of Fano Resonance on an Array of Gold Nanoparticles

  • Barbora Špačková
  • Petra Lebrušková
  • Hana Šípová
  • Pavel Kwiecien
  • Ivan Richter
  • Jiří HomolaEmail author


We investigate the optical response to refractive index changes of a Fano resonance occurring in a random array of gold nanoparticles supported on a glass substrate. The Fano resonance results from the interference between localized surface plasmon on a gold nanoparticle and the light reflected at the boundary of the glass substrate. We demonstrate that the sensitivity of the resonance to the refractive index of the surrounding medium is highly dependent on the excitation geometry and can assume either positive or negative values. We furthermore present a theoretical analysis explaining this behavior based on the rigorous coupled wave analysis (RCWA) as well as the island film theory.


Nanoparticle array Fano resonance Surface plasmon Sensor Rigorous coupled wave analysis Island film theory 



This research was supported by Praemium Academiae of the Academy of Sciences of the Czech Republic, the Czech Science Foundation (contract P205/12/G118), and by the Ministry of Education, Youth and Sports (contract LH11102).


  1. 1.
    Novotny L, van Hulst N (2011) Antennas for light. Nat Photonics 5(2):83–90. doi: 10.1038/Nphoton.2010.237 CrossRefGoogle Scholar
  2. 2.
    Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19(22):22029–22106CrossRefGoogle Scholar
  3. 3.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521. doi: 10.1021/Cr068126n CrossRefGoogle Scholar
  4. 4.
    Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and meta-materials. Nat Mater 9(9):707–715. doi: 10.1038/Nmat2810 CrossRefGoogle Scholar
  5. 5.
    Zhang SP, Bao K, Halas NJ, Xu HX, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663CrossRefGoogle Scholar
  6. 6.
    Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8(11):3983–3988CrossRefGoogle Scholar
  7. 7.
    Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10(8):3184–3189CrossRefGoogle Scholar
  8. 8.
    Svedendahl M, Käll M (2012) Fano interference between localized plasmons and interface reflections. ACS Nano 6(8):7533–7539. doi: 10.1021/Nn302879j CrossRefGoogle Scholar
  9. 9.
    Svedendahl M, Johansson P, Käll M (2013) Complete light annihilation in an ultrathin layer of gold nanoparticles. Nano Lett 13(7):3053–3058. doi: 10.1021/Nl400849f CrossRefGoogle Scholar
  10. 10.
    Bedeaux DV, Vlieger J (2001) Optical Properties of Surfaces. Imperial College Press, LondonCrossRefGoogle Scholar
  11. 11.
    Mendoza-Galvan A, Jarrendahl K, Dmitriev A, Pakizeh T, Käll M, Arwin H (2011) Optical response of supported gold nanodisks. Opt Express 19(13):12093–12107CrossRefGoogle Scholar
  12. 12.
    Maes B, Petráček J, Burger S, Kwiecien P, Luksch J, Richter I (2013) Simulations of high-Q optical nanocavities with a gradual 1D bandgap. Opt Express 21(6):6794–6806CrossRefGoogle Scholar
  13. 13.
    Čtyroký J, Kwiecien P, Richter I (2013) Analysis of hybrid dielectric-plasmonic slot waveguide structures with 3D Fourier modal methods. J Eur Opt Soc-Rapid 8. Artn 13024 doi: 10.2971/Jeos.2013.13024
  14. 14.
    Fredriksson H, Alaverdyan Y, Dmitriev A, Langhammer C, Sutherland DS, Zaech M, Kasemo B (2007) Hole-mask colloidal lithography. Adv Mater 19(23):4297–4302CrossRefGoogle Scholar
  15. 15.
    Johnson PB, Christy RW (1972) Optical-constants of noble-metals. Phys Rev B 6(12):4370–4379CrossRefGoogle Scholar
  16. 16.
    Moharam MG, Gaylord TK (1981) Rigorous coupled-wave analysis of planar-grating diffraction. J Opt Soc Am 71(7):811–818. doi: 10.1364/Josa.71.000811 CrossRefGoogle Scholar
  17. 17.
    Lalanne P, Morris GM (1996) Highly improved convergence of the coupled-wave method for TM polarization. J Opt Soc Am A 13(4):779–784. doi: 10.1364/Josaa.13.000779 CrossRefGoogle Scholar
  18. 18.
    Li L (1996) Use of Fourier series in the analysis of discontinuous periodic structures. J Opt Soc Am A 13(9):1870–1876. doi: 10.1364/Josaa.13.001870 CrossRefGoogle Scholar
  19. 19.
    Götz P, Schuster T, Frenner K, Rafler S, Osten W (2008) Normal vector method for the RCWA with automated vector field generation. Opt Express 16(22):17295–17301. doi: 10.1364/Oe.16.017295 CrossRefGoogle Scholar
  20. 20.
    Granet G (1999) Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution. J Opt Soc Am A 16(10):2510–2516. doi: 10.1364/Josaa.16.002510 CrossRefGoogle Scholar
  21. 21.
    Čtyroký J, Kwiecien P, Richter I (2010) Fourier series-based bidirectional propagation algorithm with adaptive spatial resolution. J Lightwave Technol 28(20):2969–2976. doi: 10.1109/Jlt.2010.2072983 CrossRefGoogle Scholar
  22. 22.
    Bohren CFH, D. R (1983) Absorption and scattering of light by small particles. John Wiley and SonsGoogle Scholar
  23. 23.
    Jensen T, Kelly L, Lazarides A, Schatz GC (1999) Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Clust Sci 10(2):295–317CrossRefGoogle Scholar
  24. 24.
    Kvasnička P, Homola J (2008) Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: Sensitivity considerations. Biointerphases 3(3):Fd4–Fd11. doi: 10.1116/1.2994687 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Barbora Špačková
    • 1
  • Petra Lebrušková
    • 1
  • Hana Šípová
    • 1
  • Pavel Kwiecien
    • 2
  • Ivan Richter
    • 2
  • Jiří Homola
    • 1
    Email author
  1. 1.Institute of Photonics and ElectronicsAcademy of Science of CRPragueCzech Republic
  2. 2.Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations