, Volume 9, Issue 2, pp 319–326 | Cite as

Metallic Nanowire Array–Polymer Hybrid Film for Surface Plasmon Resonance Sensitivity Enhancement and Spectral Range Enlargement

  • Wei Peng
  • Yuzhang Liang
  • Lixia Li
  • Jean-Francois Masson


In this paper, the coupling interaction is investigated between a metallic nanowire array and a metal film under the Kretschmann condition. The plasmonic multilayer is composed of a metallic nanowire array embedded in a polymer layer positioned above a metal film, exploiting the classical surface plasmon resonance (SPR) configuration. We analyze the influence of various structural parameters of the metallic nanowire array on the SPR spectrum of thin metal film. The results show that the coupling interactions of nanowires with the metal film can greatly affect SPR resonance wavelength and increase SPR sensitivity. The coupling strength of metallic nanowire array and metal film also impacts resonance wavelength, which can be used to adjust SPR range but have little effect on its sensitivity. The results are confirmed using a dipole coupling resonance model of metallic nanowire. We demonstrated that this nanostructured hybrid structure can be used for high sensitivity SPR monitoring in a large spectral range, which is important for advanced SPR measurement including fiber-optic SPR sensing technology.


Nanostructures Metal optics Multilayer design Biological sensing and sensors 



The authors would like to thank financial supports from the National Nature Science Foundation of China (grant nos. 61137005 and 60977055), the Ministry of Education of China (grant nos. NCET-09-0255, DUT11Z102, and SRFDP 20120041110040), and the National Science and Engineering Research Council of Canada (NSERC – Discovery Grant).


  1. 1.
    Maier SA (2007) Plasmonics: Fundamentals and ApplicationsGoogle Scholar
  2. 2.
    Baird CL, Myszka DG (2001) Current and emerging commercial biosensors. J Mol Recognit 14:261–268CrossRefGoogle Scholar
  3. 3.
    Henry OYF, Cullen DC, Piletsky SA (2005) Optical interrogation of molecularly imprinted polymers and development of MIP sensors: a review. Anal Bioanal Chem 382:947–956CrossRefGoogle Scholar
  4. 4.
    Law WC, Yong KT, Baev A, Hu R, Prasad PN (2009) Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods. Opt Express 17:19041–19046CrossRefGoogle Scholar
  5. 5.
    Law WC, Yong KT, Baev A, Prasad PN (2011) Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano 5:4858–4864CrossRefGoogle Scholar
  6. 6.
    Mustafa DE, Yang T, Xuan Z, Chen S, Tu H, Zhang A (2010) Surface plasmon coupling effect of gold nanoparticles with different shape and size on conventional surface plasmon resonance signal. Plasmonics 5:221–231CrossRefGoogle Scholar
  7. 7.
    Byun K, Kim S, Kim D (2005) Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis. Opt Express 13:3737–3742CrossRefGoogle Scholar
  8. 8.
    Kim K, Yoon SJ, Kim D (2006) Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study. Opt Express 14:12419–12431CrossRefGoogle Scholar
  9. 9.
    Zeng S, Yu X, Law WC, Zhang Y, Hu R, Dinh XQ, Ho HP, Yong KT (2013) Size dependence of Au NP-enhanced surface plasmon resonance differential phase measurement. Sens Actuators B 176:1128–1133CrossRefGoogle Scholar
  10. 10.
    Ciraci C, Hill RT, Mock JJ, Urzhumov Y, Fernandez-Dominguez AL, Maier SA, Pendry JB, Chilkoti A, Smith DR (2012) Probing the ultimate limits of plasmonic enhancement. Science 337:1072–1074CrossRefGoogle Scholar
  11. 11.
    Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34:244–246CrossRefGoogle Scholar
  12. 12.
    Mock JJ, Hill RT, Tsai YJ, Chilkoti A, Smith DR (2012) Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. Nano Lett 12:1757–1764CrossRefGoogle Scholar
  13. 13.
    Brunazzo D, Descrovi E, Martin OJF (2009) Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film. Opt Lett 34:1405–1407CrossRefGoogle Scholar
  14. 14.
    Live LS, Dhawan A, Gibson KF, Poirier-Richard HP, Graham D, Canva M, Vo-Dinh T, Masson JF (2012) Angle-dependent resonance of localized and propagating surface plasmons in microhole arrays for enhanced biosensing. Anal Bioanal Chem 404:2589–2868CrossRefGoogle Scholar
  15. 15.
    Live LS, Bolduc OR, Masson JF (2010) Propagating surface plasmon resonance on microhole arrays. Anal Chem 82:3780–3787CrossRefGoogle Scholar
  16. 16.
    Banerji S, Peng W, Kim YC, Menegazzo N, Booksh KS (2010) Evaluation of polymer coatings for ammonia vapor sensing with surface plasmon resonance spectroscopy. Sensor Actuat B-Chem 147:255–262CrossRefGoogle Scholar
  17. 17.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539CrossRefGoogle Scholar
  18. 18.
    Wang J, Banerji S, Menegazzo N, Peng W, Zou Q, Booksh KS (2011) Glucose detection with surface Plasmon resonance spectroscopy and molecularly imprinted hydrogel coatings. Talanta 86:133–141CrossRefGoogle Scholar
  19. 19.
    Rodrigo SG, García-Vidal FJ, Martín-Moreno L (2008) Influence of material properties on extraordinary optical transmission through hole arrays. Phys Rev B 77:075401CrossRefGoogle Scholar
  20. 20.
    Vial A, Grimault AS, Macias D, Barchiesi D, de la Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71:085416CrossRefGoogle Scholar
  21. 21.
    Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Ice-crystal absorption: a comparison between theory and implications for remote sensing. Appl Opt 37:22CrossRefGoogle Scholar
  22. 22.
    Born M, Wolf E (1986) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Pergamon, LondonGoogle Scholar
  23. 23.
    Sharma AK, Mohr GJ (2008) Theoretical understanding of an alternating dielectric multilayer-based fiber optic SPR sensor and its application to gas sensing. New J Phys 10:023039CrossRefGoogle Scholar
  24. 24.
    Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76:4773–4776CrossRefGoogle Scholar
  25. 25.
    Maxwell-Garnett JC (1904) Colors in metal glasses and metallic films. J C Philos Trans R Soc London 203:385–420CrossRefGoogle Scholar
  26. 26.
    Bludov YV, Vasilevskiy MI (2012) Resonant excitation of confined excitons in nanocrystal quantum dots using surface plasmon-polaritons. J Phys Chem C 116:13738–13744CrossRefGoogle Scholar
  27. 27.
    He L, Smith EA, Natan MJ, Keating CD (2004) The distance-dependence of colloidal Au-amplified surface plasmon resonance. J Phys Chem B 108:10973–10980CrossRefGoogle Scholar
  28. 28.
    Byun KM, Yoon SJ, Kim D, Kim SJ (2007) Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires. Opt Lett 32:1902–1904CrossRefGoogle Scholar
  29. 29.
    Golden MS, Bjonnes AC, Georgiadis RM (2010) Distance- and wavelength-dependent dielectric function of Au nanoparticles by angle-resolved surface plasmon resonance imaging. J Phys Chem C 114:8837–8843CrossRefGoogle Scholar
  30. 30.
    Byun KM (2010) Development of nanostructured plasmonic substrates for enhanced optical biosensing. J Opt Soc Korea 14:65–76CrossRefGoogle Scholar
  31. 31.
    Wang XD, Wolfbeis OS (2013) Fiber-optic chemical sensors and biosensors (2008–2012). Anal Chem 85:487–508CrossRefGoogle Scholar
  32. 32.
    Masson JF, Kim YC, Obando LA, Peng W, Booksh KS (2006) Fiber-optic surface plasmon resonance sensors in the near-infrared spectral region. Appl Spectroscopy 60:1241–1246CrossRefGoogle Scholar
  33. 33.
    Kim YC, Peng W, Banerji SN, Booksh KS (2005) Tapered fiber-optic surface plasmon resonance sensors for vapor and liquid phase analyses. Opt Lett 30:2218–2220CrossRefGoogle Scholar
  34. 34.
    Peng W, Banerji SN, Kim YC, Booksh KS (2005) Development of dual-channel fiber optic surface plasma resonance sensor for biological monitoring. Opt Lett 30:2988–2990CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wei Peng
    • 1
  • Yuzhang Liang
    • 1
  • Lixia Li
    • 1
  • Jean-Francois Masson
    • 2
  1. 1.College of Physics and Optoelectronics EngineeringDalian University of TechnologyDalianChina
  2. 2.Département de chimieUniversité de MontréalMontréalCanada

Personalised recommendations