Advertisement

Plasmonics

, Volume 9, Issue 2, pp 261–272 | Cite as

Interfacial Susceptibilities in Nanoplasmonics via Inversion of Fresnel Coefficients

  • Rémi LazzariEmail author
  • Ingve Simonsen
  • Jacques Jupille
Article

Abstract

The reflection coefficients of a nanoparticle film are driven to a large extent by perpendicular and parallel interfacial susceptibilities that have the meaning of “dielectric thicknesses” which combine the actual geometry of the film and its dielectric properties. The direct determination of these parameters faces the long-standing issue of the derivation of complex optical constants from Fresnel coefficients via a unique spectroscopic measurement. The present work sets up an iterative algorithm based on inversion of the reflection coefficients recorded in the UV–visible range for two polarization states s and p and Kramers–Kronig (KK) analysis. To calculate the KK integrals over a limited energy window, the strategy was to complement measurements by spectra calculated in the framework of the spheroidal dipole approximation. The algorithm has been successfully tested on synthetic data of differential reflectivity for supported truncated spheres. These were chosen to span different dielectric behaviors, involving (a) for the particles, metals whose optical response is dominated by plasmonic excitations with a noticeable Drude behavior (Ag and Au) and (b) for the substrate, either nonabsorbing wide bandgap (alumina) or semiconducting (zincite and titania) oxides. Unlike the thin plate model, the approach was proven to apply to “dielectric thicknesses” of several tens of nanometres in cases in which, even for geometric sizes of the order of the nanometer, the classical long-wavelength dielectric approximation fails because of strong plasmon resonances. Therefore, the disentanglement of dielectric behaviors along the parallel and perpendicular directions simplifies the understanding on the interface polarization process by removing substrate contribution. The present work that deals with plasmonics in nanoparticles can be easily generalized to different morphologies as well as to other combinations of Fresnel coefficients.

Keywords

Plasmon Nanoparticles Dielectric constant Interface susceptibilities Polarizability Surface differential reflectivity spectroscopy Film 

Notes

Acknowledgments

This work has been funded by Agence Nationale de la Recherche (ANR) (Program “Matériaux et Procédés pour des Produits Performants” contract ANR-2011-RMNP-010, COCOTRANS) and has benefited from a mobility grant AURORA between France and Norway.

References

  1. 1.
    Stockman M (2011) Phys Today 64:39CrossRefGoogle Scholar
  2. 2.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Bedeaux D, Vlieger J (2001) Optical properties of surfaces. Imperial College Press, LondonCrossRefGoogle Scholar
  4. 4.
    Noguez C (2007) J Phys Chem 111:3806Google Scholar
  5. 5.
    McIntyre J, Aspnes D (1971) Surf Sci 24:417CrossRefGoogle Scholar
  6. 6.
    Lazzari R, Jupille J (2012) Nanotechnology 23:135707CrossRefGoogle Scholar
  7. 7.
    Grachev S, de Grazia M, Barthel E, Søndergård E, Lazzari R (2013) J Phys D Appl Phys 46:375305. 10ppCrossRefGoogle Scholar
  8. 8.
    Oates T, Christalle E (2007) J Phys Chem C 111:182CrossRefGoogle Scholar
  9. 9.
    Larsson E, Langhammer C, Zorić I, Kasemo B (2009) Science 326:1091CrossRefGoogle Scholar
  10. 10.
    Gaudry M, Cottancin E, Pellarin M, Lermé J, Arnaud L, Huntzinger JR, Vialle JL, Broyer M, Rousset JL, Treilleux M, Mélinon P (2003) Phys Rev B 67:155409CrossRefGoogle Scholar
  11. 11.
    Little SA, Begou T, Collins RW, Marsillac S (2012) Appl Phys Lett 100:051107CrossRefGoogle Scholar
  12. 12.
    Drude P (1902) The theory of optics. Longmans, Green and Co, New YorkGoogle Scholar
  13. 13.
    Dignam M, Moskovits M, Stobie R (1971) Trans Faraday Soc 67:3306CrossRefGoogle Scholar
  14. 14.
    Dignam M, Moskovits M (1973) J Chem Soc Faraday Trans II 69:56CrossRefGoogle Scholar
  15. 15.
    Bagchi A, Barrera RG, Rajagopal AK (1979) Phys Rev B 20(12):4824CrossRefGoogle Scholar
  16. 16.
    Feibelman PJ (1982) Prog Surf Sci 12:287CrossRefGoogle Scholar
  17. 17.
    Hugerl K, Aspnes DE, Kamiya I, Florez LT (1993) Appl Phys Lett 63:885CrossRefGoogle Scholar
  18. 18.
    Bedeaux D, Vlieger J (1973) Physica 67:55CrossRefGoogle Scholar
  19. 19.
    Haarmans M, Bedeaux D (1995) Thin Solid Films 258:213CrossRefGoogle Scholar
  20. 20.
    Proehl H, Nitsche R, Dienel T, Leo K, Fritz T (2005) Phys Rev B 71:165207CrossRefGoogle Scholar
  21. 21.
    Pollak FH, Shen H (1993) Mat Sci and Eng 10:275Google Scholar
  22. 22.
    Hummel RE (1983) Phys Stat Sol 76:11CrossRefGoogle Scholar
  23. 23.
    Borensztein Y, Abelès F (1985) Thin Solid Films 125:129CrossRefGoogle Scholar
  24. 24.
    Lazzari R, Jupille J (2005) Phys Rev B 71:045409CrossRefGoogle Scholar
  25. 25.
    Camacho-Flores J, Sun L, Saucedo-Zeni N, Weidlinger G, Hohage M, Zeppenfeld P (2008) Phys Rev B 78:075416CrossRefGoogle Scholar
  26. 26.
    Lazzari R, Renaud G, Revenant C, Jupille J, Borenstzein Y (2009) Phys Rev B 79:125428CrossRefGoogle Scholar
  27. 27.
    Debe MK (1987) Prog Surf Sci 24:1CrossRefGoogle Scholar
  28. 28.
    Proehl H, Dienel T, Nitsche R, Fritz T (2004) Phys Rev Lett 93:097403CrossRefGoogle Scholar
  29. 29.
    Simonsen I, Lazzari R, Jupille J, Roux S (2000) Phys Rev B 61(11):7722CrossRefGoogle Scholar
  30. 30.
    Lazzari R, Simonsen I, Bedeaux D, Vlieger J, Jupille J (2001) Eur Phys J B 24:267CrossRefGoogle Scholar
  31. 31.
    Lazzari R, Roux S, Simonsen I, Jupille J, Bedeaux D, Vlieger J (2002) Phys Rev B 65:235424CrossRefGoogle Scholar
  32. 32.
    Lazzari R, Simonsen I, Jupille J (2003) Europhys Lett 61ll(4):541CrossRefGoogle Scholar
  33. 33.
    Lazzari R, Jupille J (2011) Nanotechnology 22:445703CrossRefGoogle Scholar
  34. 34.
    Beita C, Borensztein Y, Lazzari R, Nieto J, Barrera R (1999) Phys Rev B 60(8):6018CrossRefGoogle Scholar
  35. 35.
    Román-Velázquez CE, Noguez C, Barrera RG (2000) Phys Rev B 61(15):10427CrossRefGoogle Scholar
  36. 36.
    Lazzari R, Layet JM, Jupille J (2003) Phys Rev B 68:045428CrossRefGoogle Scholar
  37. 37.
    Nitsche R, Fritz T (2004) Phys Rev B 70:195432CrossRefGoogle Scholar
  38. 38.
    Henrichs S, Collier CP, Saykally RJ, Shen YR, Heath JR (2000) J Am Chem Soc 122:4077CrossRefGoogle Scholar
  39. 39.
    Poelman D, Smet PF (2003) J Phys D Appl Phys 36:1850CrossRefGoogle Scholar
  40. 40.
    Shiles E, Sasaki T, Inokuit M, Smith DY (1980) Phys Rev B 22:1612CrossRefGoogle Scholar
  41. 41.
    Smith D (1985) Dispersion theory, sum rules and their applications in the analysis of optical data. In: Handbook of optical constants of solids, vol 1. Academic, New York, pp 35–64Google Scholar
  42. 42.
    Prange RE, Drew HD, Restorffg JB (1977) J Phys C Sol Stat Phys 10:5083CrossRefGoogle Scholar
  43. 43.
    Moreels I, Allan G, De Geyter B, Wirtz L, Delerue C, Hens Z (2010) Phys Rev B 81:235319CrossRefGoogle Scholar
  44. 44.
    Ahrenkiel R (1971) J Opt Soc Am 61:1651CrossRefGoogle Scholar
  45. 45.
    Palmer K, William M, Budde B (1998) Appl Opt 37:2660CrossRefGoogle Scholar
  46. 46.
    Kuzmenko A (2005) Rev Sci Inst 76:083108CrossRefGoogle Scholar
  47. 47.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  48. 48.
    Bobbert PA, Vlieger J (1987) Physica A 147:115CrossRefGoogle Scholar
  49. 49.
    Wormeester H, Kooij S, Poelsema B (2003) Phys Rev B 68:085406CrossRefGoogle Scholar
  50. 50.
    Wormeester H, Henry AI, Kooija ES, Poelsema B, Pileni MP (2006) J Chem Phys 124:204713CrossRefGoogle Scholar
  51. 51.
    Albano AM, Bedeaux D, Vlieger J (1979) Physica A 99:293CrossRefGoogle Scholar
  52. 52.
    Albano AM, Bedeaux D, Vlieger J (1980) Physica A 102:105CrossRefGoogle Scholar
  53. 53.
    Bedeaux D, Vlieger J (1973) Physica A 73:287Google Scholar
  54. 54.
    Vlieger J, Bedeaux D (1980) Thin Solid Films 69:107CrossRefGoogle Scholar
  55. 55.
    King F (1978) J Opt Soc. Am 68:994CrossRefGoogle Scholar
  56. 56.
    Lazzari R, Simonsen I (2002) Thin Solid Films 419:124CrossRefGoogle Scholar
  57. 57.
    Yamaguchi T, Yoshida S, Kinbara A (1973) Thin Solid Films 18:63CrossRefGoogle Scholar
  58. 58.
    Yamaguchi T, Yoshida S, Kinbara A (1974) Thin Solid Films 21:173CrossRefGoogle Scholar
  59. 59.
    Johnson P, Christy R (1972) Phys Rev B 6:4370CrossRefGoogle Scholar
  60. 60.
    Campbell CT (1997) Surf Sci Rep 27(1–3):1CrossRefGoogle Scholar
  61. 61.
    Wind MM, Vlieger J (1987) Physica A 141:33CrossRefGoogle Scholar
  62. 62.
    Palik ED (1985) Handbook of optical constants of solids, vol. 1–3. Academic, New YorkGoogle Scholar
  63. 63.
    Jackson JD (1975) Classical electrodynamics. Wiley, New YorkGoogle Scholar
  64. 64.
    Haarmans MT, Bedeaux D (1993) Thin Solid Films 224:117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rémi Lazzari
    • 1
    Email author
  • Ingve Simonsen
    • 2
  • Jacques Jupille
    • 1
  1. 1.Institut des NanoSciences de Paris, CNRS UMR 7588UPMC University Paris 06 and CNRSParis Cedex 05France
  2. 2.Department of PhysicsNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations