, Volume 9, Issue 2, pp 227–235 | Cite as

Aqueous Diaminsilver Hydroxide as a Precursor of Pure Silver Nanoparticles for SERS Probing of Living Erythrocytes

  • Anna A. Semenova
  • Nadezda A. Brazhe
  • Evgeniya Y. Parshina
  • Vladimir K. Ivanov
  • Georgy V. Maksimov
  • Eugene A. Goodilin


A new effective and simple preparation method of pure metallic hydrosols consisting of silver nanoparticles is proposed using aqueous diaminsilver hydroxide as a precursor freed of special reducing agents, surfactants, or anionic pollutants. The process is driven by NH3 ligand loss and silver complex dissociation followed by silver ion reduction with hydroxyl ions or ammonia itself present in the solution. Self-reduction of aqueous diaminsilver hydroxide occurs for 20–60 min at 90–100 °C in water and results in a wide range of silver nanoparticles, with their sizes dependent on silver complex concentration and reaction time. The pure silver hydrosol is found to attach to a cell membrane without its damage thus allowing measurements of SERS spectra of submembrane hemoglobin inside living erythrocytes.


Silver Nanoparticles Soft Chemistry Ammonia SERS 



This work was supported by the Russian Foundation for Basic Research (contract 13-03-12190), the Development Program of MSU and The Danish Council for Independent Research | Natural Sciences. Authors thanks O. Sosnovtseva (Copenhagen University) and S. Savilov (MSU) for their help with the experiments and their fruitful discussions.


  1. 1.
    Evanoff DD Jr, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6:1221–1231CrossRefGoogle Scholar
  2. 2.
    Lim B, Xia Y (2011) Metal nanocrystals with highly branched morphologies. Angew Chem, Int Ed 50:76–85CrossRefGoogle Scholar
  3. 3.
    Meng XK, Tang SC, Vongehr S (2010) A review on diverse silver nanostructures. J Mater Sci Technol 2010(26):487–522CrossRefGoogle Scholar
  4. 4.
    Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463CrossRefGoogle Scholar
  5. 5.
    Zhang Q, Tan YN, Xie J, Lee JY (2009) Colloidal synthesis of plasmonic metallic nanoparticles. Plasmonics 4:9–22CrossRefGoogle Scholar
  6. 6.
    Alvarez-Puebla RA, Liz-Marzán LM (2010) SERS-based diagnosis and biodetection. Small 2010(6):604–610CrossRefGoogle Scholar
  7. 7.
    Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588CrossRefGoogle Scholar
  8. 8.
    Brazhe NA, Abdali S, Brazhe AR, Luneva OG, Bryzgalova NY, Parshina EY, Sosnovtseva OV, Maksimov GV (2009) New insight into erythrocyte through in vivo surface-enhanced Raman spectroscopy. Biophys J 97:3206–3214CrossRefGoogle Scholar
  9. 9.
    Fang J, Liu S, Li Z (2011) Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor. Biomaterials 32:4877–4884CrossRefGoogle Scholar
  10. 10.
    Xu G, Qiao X, Qiu X, Chen J (2010) A facile method to prepare quickly colloidal silver nanoparticles. Rare Metal Mater Eng 39:1532–1535CrossRefGoogle Scholar
  11. 11.
    Daniels JK, Chumanov G (2005) Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering. J Phys Chem B 109:17936–17942CrossRefGoogle Scholar
  12. 12.
    März A, Mönch B, Rösch P, Kiehntopf M, Henkel T, Popp J (2011) Detection of thiopurine methyltransferase activity in lysed red blood cells by means of lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS). Anal Bioanal Chem 400:2755–2767CrossRefGoogle Scholar
  13. 13.
    Huang T, Xu X-HN (2010) Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J Mater Chem 2010(20):9867–9876CrossRefGoogle Scholar
  14. 14.
    Zhang X-Y, Hu A, Zhang T, Lei W, Xue X-J, Zhou Y, Duley WW (2011) Self-assembly of largescale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano 5:9082–9092CrossRefGoogle Scholar
  15. 15.
    Peng S, Sun Y (2010) Synthesis of silver nanocubes in a hydrophobic binary organic solvent. Chem Mater 22:6272–6279CrossRefGoogle Scholar
  16. 16.
    Pietrobon B, Kitaev V (2008) Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem Mater 20:5186–5190CrossRefGoogle Scholar
  17. 17.
    Leopold N, Lendl B (2003) A new method for fast preparation of highly surfaceenhanced Raman 10 scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107:5723–5727CrossRefGoogle Scholar
  18. 18.
    Boca SC, Potara M, Gabudean A-M, Juhem A, Baldeck PL, Astilean S (2011) Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett 311:131–140CrossRefGoogle Scholar
  19. 19.
    Charles DE, Aherne D, Gara M, Ledwith DM, Gun’ko YK, Kelly JM, Blau WJ, Brennan-Fournet ME (2010) Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. ACS Nano 2010(4):55–64CrossRefGoogle Scholar
  20. 20.
    Evanoff DD Jr, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 1. “silver-only” aqueous suspensions via hydrogen reduction. J Phys Chem 108:13948–13956CrossRefGoogle Scholar
  21. 21.
    Kneipp J, Kneipp H, Wittig B, Kneipp K (2007) One- and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 7:2819–2823CrossRefGoogle Scholar
  22. 22.
    Yu D, Yam VW-W (2005) Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction. J Phys Chem B 109:5497–503CrossRefGoogle Scholar
  23. 23.
    Zeng J, Xia X, Rycenga M, Henneghan P, Li Q, Xia Y (2011) Successive deposition of silver on silver nanoplates: lateral versus vertical growth. Angew Chem, Int Ed 50:244–249CrossRefGoogle Scholar
  24. 24.
    Fan L, Guo R (2008) Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions, Cryst. Growth Des 8:2150–2156CrossRefGoogle Scholar
  25. 25.
    Guerrero-Martínez A, Barbosa S, Pastoriza-Santos I, Liz-Marzán LM (2011) Nanostars shine bright for you. Colloid Interface Science 16:118–127CrossRefGoogle Scholar
  26. 26.
    Jena BK, Mishra BK, Bohidar S (2009) Synthesis of branched Ag nanoflowers based on a bioinspired technique: their surface enhanced Raman scattering and antibacterial activity. J Phys Chem C 113:14753–14758CrossRefGoogle Scholar
  27. 27.
    Liang H, Li Z, Wang W, Wu Y, Xu H (2009) Highly surface-roughened "flower-like" silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering. Adv Mater 21:4614–4618CrossRefGoogle Scholar
  28. 28.
    Shen XS, Wang GZ, Hong X, Zhu W (2009) Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates. Phys Chem Chem Phys 11:7450–7454CrossRefGoogle Scholar
  29. 29.
    Zhang J, Liu H, Zhan P, Wang Z, Ming N (2007) Controlling the growth and assembly of silver nanoprisms. Adv Funct Mater 17:1558–1566CrossRefGoogle Scholar
  30. 30.
    Cho EC, Cobley CM, Rycenga M, Xia Y (2009) Fine tuning the optical properties of Au–Ag nanocages by selectively etching Ag with oxygen and a water-soluble thiol. J Mater Chem 2009(19):6317–6320CrossRefGoogle Scholar
  31. 31.
    Gallardo OAD, Moiraghi R, Macchione MA, Godoy JA, Pérez MA, Coronado EA, Macagno VA (2012) Silver oxide particles/silver nanoparticles interconversion: susceptibility of forward/backward reactions to the chemical environment at room temperature. RSC Adv 2:2923–2929CrossRefGoogle Scholar
  32. 32.
    Ho C-M, Yau SK-W, Lok C-N, So M-H, Che C-M (2010) Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Chem Asian J 5:285–293CrossRefGoogle Scholar
  33. 33.
    Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 2002(298):2176CrossRefGoogle Scholar
  34. 34.
    Coskun S, Aksoy B, Unalan HE (2011) Polyol synthesis of silver nanowires: an extensive parametric study. Cryst Growth Des 11:4963–4969CrossRefGoogle Scholar
  35. 35.
    Chen D, Qiao X, Qiu X, Chen J, Jiang R (2010) Convenient, rapid synthesis of silver nanocubes and nanowires via a microwave-assisted polyol method. Nanotechnology 21:025607CrossRefGoogle Scholar
  36. 36.
    Liang H, Yang H, Wang W, Li J, Xu H (2009) High-yield uniform synthesis and microstructuredetermination of rice-shaped silver nanocrystals. J Am Chem Soc 131:6068–6069CrossRefGoogle Scholar
  37. 37.
    Luo X, Li Z, Yuana C, Chen Y (2011) Polyol synthesis of silver nanoplates: The crystal growth mechanism based on a rivalrous adsorption. Mater Chem Phys 128:77–82CrossRefGoogle Scholar
  38. 38.
    Wood BR, Caspers P, Puppels GJ, Pandiancherri S, Mc-Naughton D (2007) Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal Bioanal Chem 387:1691–1703CrossRefGoogle Scholar
  39. 39.
    Semenova AA, Goodilin EA, Brazhe NA, Ivanov VK, Baranchikov AE, Lebedev VA, Goldt AE, Sosnovtseva OV, Savilov SV, Egorov AV, Brazhe AR, Parshina EY, Luneva OG, Maksimov GV, Tretyakov YD (2012) Planar SERS nanostructures with stochastic silver ring morphology for biosensor chips. J Mater Chem 22:24530–24544Google Scholar
  40. 40.
    Jiang XC, Xiong SX, Tian ZA, Chen CY, Chen WM, Yu AB (2011) Twinned structure and growth of V-shaped silver nanowires generated by a polyol-thermal approach. J Phys Chem C 125:1800CrossRefGoogle Scholar
  41. 41.
    Tomellini M (2011) Impact of soft impingement on the kinetics of diffusion-controlled growth of immiscible alloys Comput. Mater Sci 50:2371–2379Google Scholar
  42. 42.
    Kiran MS, Itoh T, Yoshida K, Kawashima N, Biju V, Ishikawa M (2010) Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy Anal. Chem 82:1342–1348Google Scholar
  43. 43.
    Mahato M, Pal P, Tah B, Ghosh M, Talapatra GB (2011) Study of silver nanoparticle–hemoglobin interaction and composite formation Colloids and Surfaces. B: Biointerfaces 88:141–149Google Scholar
  44. 44.
    Xu H, Bjerneld EJ, Käll M, Bӧrjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360CrossRefGoogle Scholar
  45. 45.
    Shaklai N, Yguerabide J, Ranney HM (1977) Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry 1977(16):5585–5592CrossRefGoogle Scholar
  46. 46.
    Stein P, Burke JM, Spiro TG (1975) Structural interpretation of heme protein resonance Raman frequencies. Preliminary normal coordinate analysis results. J Am Chem Soc 97:2304–2305CrossRefGoogle Scholar
  47. 47.
    Tom RT, Samal AK, Sreeprasad TS, Pradeep T (2007) Hemoprotein bioconjugates of Au and Ag nanoparticles and Au nanorods. Langmuir 23:1320–1325CrossRefGoogle Scholar
  48. 48.
    De Luca AC, Rusciano G, Ciancia R, Martinelli V, Pesce G, Rotoli B, Selvaggi L, Sasso A (2008) Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman tweezers. Optics Express 16:7943–7957CrossRefGoogle Scholar
  49. 49.
    Bernhardt I, Ellory JC (eds) (2003) Red cell membrane transport in health and disease. Springer, New YorkGoogle Scholar
  50. 50.
    Brazhe NA, Parshina EY, Khabatova VV, Semenova AA, Brazhe AR, Yusipovich AI, Sarycheva AS, Churin AA, Goodilin EA, Maksimov GV, Sosnovtseva OV (2013) Tuning SERS for living erythrocytes: focus on nanoparticle size and plasmon resonance position. J Raman Spectrosc 44:686–694Google Scholar
  51. 51.
    Parshina EY, Sarycheva AS, Yusipovich AI, Brazhe NA, Goodilin EA, Maksimov GV (2013) Combined Raman and atomic force microscopy study of hemoglobin distribution inside erythrocytes and nanoparticle localization on the erythrocyte surface. Laser Phys Lett 10:075607Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anna A. Semenova
    • 1
  • Nadezda A. Brazhe
    • 2
  • Evgeniya Y. Parshina
    • 2
  • Vladimir K. Ivanov
    • 1
    • 3
  • Georgy V. Maksimov
    • 2
  • Eugene A. Goodilin
    • 1
    • 4
  1. 1.Department of Materials ScienceMoscow State UniversityMoscowRussia
  2. 2.Faculty of BiologyMoscow State UniversityMoscowRussia
  3. 3.Kurnakov Institute of General and Inorganic Chemistry of RASMoscowRussia
  4. 4.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations