Advertisement

Plasmonics

, Volume 9, Issue 1, pp 79–92 | Cite as

Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping

  • Maha Chamtouri
  • Anuj Dhawan
  • Mondher Besbes
  • Julien Moreau
  • Hassen Ghalila
  • Tuan Vo-Dinh
  • Michael Canva
Article

Abstract

In this study, we theoretically investigate the sensing potential of 2D nano- and micro-ribbon grating structuration on the surface of Kretschmann-based surface plasmon resonance (SPR) biosensors when they are employed for detection of biomolecular binding events. Numerical simulations were carried out by employing a model based on the hybridization of two classical methods, the Fourier modal method and the finite element method. Our calculations confirm the importance of light manipulation by means of structuration of the plasmonic thin film surfaces on the nano- and micro-scales. Not only does it highlight the geometric parameters that allow the sensitivity enhancement compared with the response of the conventional SPR biosensor based on a flat surface but also describes the transition from the regime where the propagating surface plasmon mode dominates to the regime where the localized surface plasmon mode dominates. An exhaustive mapping of the biosensing potential of the 2D nano- and micro-structured biosensors surface is presented, varying the structural parameters related to the ribbon grating dimensions, i.e., the widths and thicknesses. The nano- and micro-structuration also leads to the creation of regions on biosensor chips that are characterized by strongly enhanced electromagnetic (EM) fields. New opportunities for further improving the sensitivity are offered if localization of biomolecules can be carried out in these regions of high EM fields. The continuum of nano- and micro-ribbon structured biosensors described in this study should prove a valuable tool for developing sensitive and reliable 2D-structured plasmonic biosensors.

Keywords

Surface plasmon resonance (SPR) sensors Plasmonics Biosensors Localized surface plasmon Field enhancement Figure of merit 

Notes

Acknowledgment

The authors would like to acknowledge the international-associated laboratories: “Laboratoire Orsay-Tunis sur les Atomes, Molécules, Plasmas” (LIA-LOTAMP), the Department of Electronics and Information Technology (DEITY), Ministry of Communications and Information Technology (MCIT), Government of India, as well as the Nanoscale Research Facility at the Indian Institute of Technology, Delhi for their financial support. Part of this work also took place during sabbatical of M. C. at Duke University with support from CNRS and DGA. LCF/IOGS—CNRS is core member of the Photonics for Life European Network of Excellence in Biophotonics as well as the Labex NanoSaclay from which it received support.

References

  1. 1.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493. doi: 10.1021/cr068107d CrossRefGoogle Scholar
  2. 2.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539. doi: 10.1007/s00216-003-2101-0 CrossRefGoogle Scholar
  3. 3.
    Wolf LK, Fullenkamp DE, Georgiadis RM (2005) Quantitative angle-resolved SPR imaging of DNA–DNA and DNA–drug kinetics. J Am Chem Soc 127(49):17453–17459. doi: 10.1021/ja056422w CrossRefGoogle Scholar
  4. 4.
    Bardin F, Bellemain A, Roger G, Canva M (2009) Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization. Biosens Bioelectron 24(7):2100–2105. doi: 10.1016/j.bios.2008.10.023 CrossRefGoogle Scholar
  5. 5.
    Lecaruyer P, Mannelli I, Courtois V, Goossens M, Canva M (2006) Surface plasmon resonance imaging as a multidimensional surface characterization instrument—application to biochip genotyping. Anal Chim Acta 573–574:333–340. doi: 10.1016/j.aca.2006.03.003 CrossRefGoogle Scholar
  6. 6.
    Bassil N, Maillart E, Canva M, Levy Y, Millot MC, Pissard S, Narwa R, Goossens M (2003) One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations. Sensors Actuators B Chem 94(3):313–323. doi: 10.1016/s0925-4005(03)00462-3 CrossRefGoogle Scholar
  7. 7.
    Campbell CT, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28(15):2380–2392. doi: 10.1016/j.biomaterials.2007.01.047 CrossRefGoogle Scholar
  8. 8.
    Piliarik M, Párová L, Homola J (2009) High-throughput SPR sensor for food safety. Biosens Bioelectron 24(5):1399–1404. doi: 10.1016/j.bios.2008.08.012 CrossRefGoogle Scholar
  9. 9.
    Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2000) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73(1):1–7. doi: 10.1021/ac0010431 CrossRefGoogle Scholar
  10. 10.
    Hottin J, Moreau J, Roger G, Spadavecchia J, Millot M-C, Goossens M, Canva M (2007) Plasmonic DNA: towards genetic diagnosis chips. Plasmonics 2(4):201–215. doi: 10.1007/s11468-007-9039-6 CrossRefGoogle Scholar
  11. 11.
    Maillart E, Brengel-Pesce K, Capela D, Roget A, Livache T, Canva M, Levy Y, Soussi T (2004) Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction. Oncogene 23(32):5543–5550, http://www.nature.com/onc/journal/v23/n32/suppinfo/1207639s1.html CrossRefGoogle Scholar
  12. 12.
    Wegner GJ, Lee HJ, Marriott G, Corn RM (2003) Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein–protein and protein–DNA interactions. Anal Chem 75(18):4740–4746. doi: 10.1021/ac0344438 CrossRefGoogle Scholar
  13. 13.
    Piliarik M, Homola JI (2009) Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17(19):16505–16517CrossRefGoogle Scholar
  14. 14.
    Nikitin PI, Beloglazov AA, Kochergin VE, Valeiko MV, Ksenevich TI (1999) Surface plasmon resonance interferometry for biological and chemical sensing. Sensors Actuators B Chem 54(1–2):43–50. doi: 10.1016/S0925-4005(98)00325-6 CrossRefGoogle Scholar
  15. 15.
    Kabashin AV, Patskovsky S, Grigorenko AN (2009) Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt Express 17(23):21191–21204CrossRefGoogle Scholar
  16. 16.
    Zynio S, Samoylov A, Surovtseva E, Mirsky V, Shirshov Y (2002) Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2(2):62–70CrossRefGoogle Scholar
  17. 17.
    Lecaruyer P, Canva M, Rolland J (2007) Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method. Appl Opt 46(12):2361–2369CrossRefGoogle Scholar
  18. 18.
    Wark AW, Lee HJ, Corn RM (2005) Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem 77(13):3904–3907. doi: 10.1021/ac050402v CrossRefGoogle Scholar
  19. 19.
    Chabot V, Miron Y, Grandbois M, Charette PG (2012) Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth. Sensors Actuators B Chem 174(0):94–101. doi: 10.1016/j.snb.2012.08.028 CrossRefGoogle Scholar
  20. 20.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521. doi: 10.1021/cr068126n CrossRefGoogle Scholar
  21. 21.
    Kubo W, Fujikawa S (2010) Au double nanopillars with nanogap for plasmonic sensor. Nano Lett 11(1):8–15. doi: 10.1021/nl100787b CrossRefGoogle Scholar
  22. 22.
    Kedem O, Tesler AB, Vaskevich A, Rubinstein I (2011) Sensitivity and optimization of localized surface plasmon resonance transducers. ACS Nano 5(2):748–760. doi: 10.1021/nn102617d CrossRefGoogle Scholar
  23. 23.
    Lee K-L, Chen P-W, Wu S-H, Huang J-B, Yang S-Y, Wei P-K (2012) Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films. ACS Nano 6(4):2931–2939. doi: 10.1021/nn3001142 CrossRefGoogle Scholar
  24. 24.
    Kim S, Jung J-M, Choi D-G, Jung H-T, Yang S-M (2006) Patterned arrays of Au rings for localized surface plasmon resonance. Langmuir 22(17):7109–7112. doi: 10.1021/la0605844 CrossRefGoogle Scholar
  25. 25.
    Wang H, Brandl DW, Nordlander P, Halas NJ (2006) Plasmonic nanostructures: artificial molecules. Acc Chem Res 40(1):53–62. doi: 10.1021/ar0401045 CrossRefGoogle Scholar
  26. 26.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453CrossRefGoogle Scholar
  27. 27.
    Kim K, Yoon SJ, Kim D (2006) Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study. Opt Express 14(25):12419–12431CrossRefGoogle Scholar
  28. 28.
    Alleyne CJ, Kirk AG, McPhedran RC, Nicorovici N-AP, Maystre D (2007) Enhanced SPR sensitivity using periodic metallic structures. Opt Express 15(13):8163–8169CrossRefGoogle Scholar
  29. 29.
    Byun KM, Jang SM, Kim SJ, Kim D (2009) Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength metallic nanostructures. J Opt Soc Am A 26(4):1027–1034CrossRefGoogle Scholar
  30. 30.
    Hoa XD, Tabrizian M, Kirk AG (2009) Rigorous coupled-wave analysis of surface plasmon enhancement from patterned immobilization on nanogratings. J Sensors. doi: 10.1155/2009/713641 Google Scholar
  31. 31.
    Hoa XD, Martin M, Jimenez A, Beauvais J, Charette P, Kirk A, Tabrizian M (2008) Fabrication and characterization of patterned immobilization of quantum dots on metallic nano-gratings. Biosens Bioelectron 24(4):970–975. doi: 10.1016/j.bios.2008.07.069 CrossRefGoogle Scholar
  32. 32.
    Feuz L, Jönsson P, Jonsson MP, Höök F (2010) Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. ACS Nano 4(4):2167–2177. doi: 10.1021/nn901457f CrossRefGoogle Scholar
  33. 33.
    Live LS, Bolduc OR, Masson J-F (2010) Propagating surface plasmon resonance on microhole arrays. Anal Chem 82(9):3780–3787. doi: 10.1021/ac100177j CrossRefGoogle Scholar
  34. 34.
    Dhawan A, Duval A, Nakkach M, Barbillon G, Moreau J, Canva M, Vo-Dinh T (2011) Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging. Nanotechnology 22(16):165301CrossRefGoogle Scholar
  35. 35.
    Duval A, Nakkach M, Bellemain A, Moreau J, Canva M, Dhawan A (2011) Tuan V-D Nanostructured substrates for surface plasmon resonance sensors. In: BioPhotonics, 2011 International Workshop on, 8–10 June 2011 2011. pp 1-3Google Scholar
  36. 36.
    Lecaruyer P, Maillart E, Canva M, Rolland J (2006) Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance. Appl Opt 45(33):8419–8423CrossRefGoogle Scholar
  37. 37.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379CrossRefGoogle Scholar
  38. 38.
    Yoon SJ, Kim D (2008) Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors. J Opt Soc Am A 25(3):725–735CrossRefGoogle Scholar
  39. 39.
    Malic L, Cui B, Tabrizian M, Veres T (2009) Nanoimprinted plastic substrates for enhanced surface plasmon resonance imaging detection. Opt Express 17(22):20386–20392CrossRefGoogle Scholar
  40. 40.
    Moharam MG, Pommet DA, Grann EB, Gaylord TK (1995) Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A 12(5):1077–1086CrossRefGoogle Scholar
  41. 41.
    Dossou K, Packirisamy M, Fontaine M (2005) Analysis of diffraction gratings by using an edge element method. J Opt Soc Am A 22(2):278–288CrossRefGoogle Scholar
  42. 42.
    Besbes M, Hugonin J, Lalanne P, Van Haver S, Janssen O, Nugrowati A, Xu M, Pereira S, Urbach H, Van De Nes A, Bienstman P, Granet G, Moreau A, Helfert S, Sukharev M, Seideman T, Baida F, Guizal B, Van Labeke D (2007) Numerical analysis of a slit-groove diffraction problem. J Eur Opt Soc 2:7022CrossRefGoogle Scholar
  43. 43.
    Hugonin JP, Besbes M, Lalanne P (2008) Hybridization of electromagnetic numerical methods through the G-matrix algorithm. Opt Lett 33(14):1590–1592CrossRefGoogle Scholar
  44. 44.
    Schröter U, Heitmann D (1999) Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration. Phys Rev B 60(7):4992–4999CrossRefGoogle Scholar
  45. 45.
    Ritchie RH, Arakawa ET, Cowan JJ, Hamm RN (1968) Surface-plasmon resonance effect in grating diffraction. Phys Rev Lett 21(22):1530–1533CrossRefGoogle Scholar
  46. 46.
    Barnes WL, Preist TW, Kitson SC, Sambles JR (1996) Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys Rev B 54(9):6227–6244CrossRefGoogle Scholar
  47. 47.
    Barnes WLD, Alain Ebbesen, Thomas W (2003) Surface plasmon subwavelength optics. NatureGoogle Scholar
  48. 48.
    Dhawan A, Canva M, Vo-Dinh T (2011) Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Opt Express 19(2):787–813CrossRefGoogle Scholar
  49. 49.
    Le Perchec J, Quémerais P, Barbara A, López-Ríos T (2008) Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. Phys Rev Lett 100(6):066408CrossRefGoogle Scholar
  50. 50.
    Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366CrossRefGoogle Scholar
  51. 51.
    Lehmann F, Richter G, Borzenko T, Hock V, Schmidt G, Molenkamp LW (2003) Fabrication of sub-10-nm Au–Pd structures using 30 keV electron beam lithography and lift-off. Microelectron Eng 65(3):327–333. doi: 10.1016/s0167-9317(02)00963-2 CrossRefGoogle Scholar
  52. 52.
    Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Plasmon resonances of silver nanowires with a nonregular cross section. Phys Rev B 64(23):235402CrossRefGoogle Scholar
  53. 53.
    Piliarik M, Kvasnička P, Galler N, Krenn JR, Homola J (2011) Local refractive index sensitivity of plasmonic nanoparticles. Opt Express 19(10):9213–9220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maha Chamtouri
    • 1
    • 3
  • Anuj Dhawan
    • 2
  • Mondher Besbes
    • 1
  • Julien Moreau
    • 1
  • Hassen Ghalila
    • 3
  • Tuan Vo-Dinh
    • 4
  • Michael Canva
    • 1
  1. 1.Laboratoire Charles Fabry, Institut d’Optique Graduate SchoolUniv Paris Sud, CNRSPalaiseauFrance
  2. 2.Department of Electrical EngineeringIndian Institute of Technology-DelhiNew DelhiIndia
  3. 3.Laboratoire de Spectroscopie Atomique Moléculaire et ApplicationsFaculté des SciencesTunisTunisia
  4. 4.Departments of Biomedical Engineering and ChemistryDuke UniversityDurhamUSA

Personalised recommendations