, Volume 8, Issue 4, pp 1691–1698 | Cite as

Search of Extremely Sensitive Near-Infrared Plasmonic Interfaces: A Theoretical Study

  • Ophélie Saison-Francioso
  • Gaëtan Lévêque
  • Abdellatif Akjouj
  • Yan Pennec
  • Bahram Djafari-Rouhani
  • Rabah Boukherroub
  • Sabine Szunerits


The sensitivity of the wavelength position of localized surface plasmon resonance (LSPR) in metal nanostructures to local changes in the refractive index has been widely used for label-free detection strategies. Tuning the optical properties of the nanostructures from the visible to the infrared region is expected to have a drastic effect on the refractive index sensitivity. Here, we theoretically investigate the optical response of a newly designed plasmonic interface to changes in the bulk refractive index by the finite difference time domain method. It consists of a structured interface, where the planar interface is superposed with dielectric pillars 30 nm in height and 125 nm in length with a separation distance of 15 nm. The pillars are covered with U-shaped gold nanostructures of 50 nm in height, 125 nm in length, and 5 nm of gold base thickness. The whole structure is finally covered with a 5-nm thick dielectric layer of n2 = 2.63. This plasmonic structure shows bulk refractive index sensitivities up to 1750 nm/RIU (RIU : refractive index unit) in the near infrared (λ = 2621 nm). The enhanced sensitivity is a consequence of the extremely enhanced electrical field between the gold nanopillars of the plasmonic interface.


Localized surface plasmon resonance 2D grating structures Gold nanostructures Near infrared Dielectric layers Coating Lorentz–Drude model 


  1. 1.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828CrossRefGoogle Scholar
  2. 2.
    Szunerits S, Boukherroub R (2012) Sensing using localised surface plasmon resonance sensors. Chem Commun 48:8999CrossRefGoogle Scholar
  3. 3.
    Chung T, Lee S-Y, Song EY, Chun H, Lee B (2011) Sensors 11:10907CrossRefGoogle Scholar
  4. 4.
    Koller DM, Hohenester U, Hohenau A, Ditlbacher H, Reil F, Galler N, Aussenegg FR, Leitner A, Trugler A, Krenn JR (2010) Superresolution moiré mapping of particle plasmon modes. Phys Rev Lett 104:143901CrossRefGoogle Scholar
  5. 5.
    Kvasnicka P, Homola J (2008) Biointerphases 3:FD4CrossRefGoogle Scholar
  6. 6.
    Piliarik M, Kvasnicka P, Galler N, Krenn JR, Homola J (2011) Local refractive index sensitivity of plasmonic nanoparticles. Opt Express 19:9213CrossRefGoogle Scholar
  7. 7.
    Hanarp P, Kall M, Sutherland D (2003) Optical properties of short range ordered arrays of nanometer gold disks prepared by Colloidal Lithography. J Phys Chem B 107:5768CrossRefGoogle Scholar
  8. 8.
    Mayer KM, Hao F, Lee S, Nordlander P, Hafner JH (2010) Nanotechnology 21:255503CrossRefGoogle Scholar
  9. 9.
    Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN (2005) Nano Lett 5:2034CrossRefGoogle Scholar
  10. 10.
    Lodewijks K, Van Roy W, Borghs G, Lagae L, Van Dorpe P (2010) Nano Lett 12:1655CrossRefGoogle Scholar
  11. 11.
    Liu S-D, Yang Z, Liu R-P, Li X-Y (2011) J Phys Chem B 115:24469Google Scholar
  12. 12.
    Jain PK, El-Sayed IH (2010) Chem Phys Lett 487:153CrossRefGoogle Scholar
  13. 13.
    Larsson EM, Alegret J, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7:1256CrossRefGoogle Scholar
  14. 14.
    Wang H, Brandl DW, Le F, Nordlander P, Halas N (2006) Nanorice: A hybrid plasmonic nanostructure. Nano Lett 6:827CrossRefGoogle Scholar
  15. 15.
    Bukasov R, Shumaker-Parry JS (2007) Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett 7:1113CrossRefGoogle Scholar
  16. 16.
    Verellen N, Van Dorpe P, Huang C-C, Lodewijks K, Vandenbosch GEA, Lagae L, Moshchalkov VV (2011) Nano Lett 11:391CrossRefGoogle Scholar
  17. 17.
    Yee KS (1966) IEEE Trans Antennas Propagat 14:302CrossRefGoogle Scholar
  18. 18.
    Taflove A (1995) Computational electrodynamics: the finite-difference time-domain method. Norwood, Artech House, MAGoogle Scholar
  19. 19.
    Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185CrossRefGoogle Scholar
  20. 20.
    Rakic AD, Djuristic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271CrossRefGoogle Scholar
  21. 21.
    Palik ED (1998) Handbouk of Optical Constants of Solids, Academic Press, USAGoogle Scholar
  22. 22.
    Dmitriev A, Hägglund C, Chen S, Fredriksson H, Pakizeh T, Käll, M, Sutherland DS (2008) Nano Lett 8:3893Google Scholar
  23. 23.
    Miller MM, Lazarides AA (2005) J Phys Chem B 109:21556CrossRefGoogle Scholar
  24. 24.
    Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive Index sensitivity of gold nanoparticles. Langmuir 24(10), 5233−5237Google Scholar
  25. 25.
    Nehl CL, Liao HW, Hafner JH (2006) Nano Lett 6:683CrossRefGoogle Scholar
  26. 26.
    Galopin E, Niedziółka-Jönsson J, Akjouj A, Pennec Y, Djafari-Rouhani B, Noual A, Boukherroub R, Szunerits S (2010) Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: experimental and theoretical investigations. J Phys Chem C 114:11769CrossRefGoogle Scholar
  27. 27.
    Galopin E et al (2009) Short and long range sensing using plasmonic nanostructures: experimental and theoretical studies. J Phys Chem C 113:15921CrossRefGoogle Scholar
  28. 28.
    Szunerits S, Ghodbane S, Niedziolka-Jonsson J, Galopin E, Klausner F, Akjouj A, Pennec Y, Djafari-Rouhani B, Boukherroub R, Steinmuller-Nethel D (2010) Development and characterization of a diamond-based localized surface plasmon resonance interface. J Phys Chem C 114:3346CrossRefGoogle Scholar
  29. 29.
    Saison O, Lévêque G, Akjouj A, Pennec Y, Djafari-Rouhani B, Szunerits S, Boukherreoub R (2012) Plasmonic nanoparticles array for high-sensitivity sensing: a theoretical investigation. J Phys Chem C 116:17819Google Scholar
  30. 30.
    Pinchuk AO, Schatz GC (2008) Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles. Mater Sci and Eng B 149:251CrossRefGoogle Scholar
  31. 31.
    Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080CrossRefGoogle Scholar
  32. 32.
    Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ophélie Saison-Francioso
    • 1
    • 2
  • Gaëtan Lévêque
    • 2
  • Abdellatif Akjouj
    • 2
  • Yan Pennec
    • 2
  • Bahram Djafari-Rouhani
    • 2
  • Rabah Boukherroub
    • 1
    • 2
  • Sabine Szunerits
    • 1
  1. 1.Institut de Recherche Interdisciplinaire (IRI, USR-3078)Université Lille 1, Parc de la Haute BorneVilleneuve d’AscqFrance
  2. 2.Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN)UMR-CNRS 8520, Université Lille 1, Cité ScientifiqueVilleneuve d’AscqFrance

Personalised recommendations