Advertisement

Plasmonics

, Volume 8, Issue 4, pp 1613–1619 | Cite as

Propagation Loss of Long-Range Surface Plasmon Polariton Gold Stripe Waveguides in the Thin-Film Limit

  • Ilya Slovinsky
  • Gudmundur K. Stefansson
  • Anna Kossoy
  • Kristjan Leosson
Article

Abstract

Propagation loss experienced by long-range plasmon polaritons in ultrathin gold stripe waveguides embedded in different polymer cladding materials was studied and correlated with atomic-scale characterization of the gold film structure. We identify the main sources of experimentally observed propagation loss which deviates from ideal values in the thin-film limit. Increased loss can be translated to an increased effective thickness of the ultrathin films due to incomplete surface coverage and the presence of diffuse interfaces, both of which depend significantly on the choice of cladding material. The results illustrate the importance of atomic-scale dynamics of metal film formation for the selection of optimum substrate materials for surface plasmon polariton waveguides, resonant transmission structures, and semitransparent electrical contacts.

Keywords

Surface plasmons Optical waveguides Optical polymers Ultrathin metal films 

Notes

Acknowledgments

This project was supported by the Icelandic Research Fund, the FP7 IRSES POLATER and POLAPHEN projects, as well as the ESF PLASMON-BIONANOSENSE network. The authors wish to thank Stéphane Kena-Cohen and Stefan Maier for the fruitful discussions.

References

  1. 1.
    Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photon 1:484–588CrossRefGoogle Scholar
  2. 2.
    Berini P (1999) Plasmon-polariton modes guided by a metal film of finite width. Opt Lett 24:1011-1013CrossRefGoogle Scholar
  3. 3.
    Gather M, Meerholz K, Danz N, Leosson K (2010) Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat Photon 4:457–461CrossRefGoogle Scholar
  4. 4.
    DeLeon I, Berini P (2010) Amplification of long-range surface plasmons by a dipolar gain medium. Nat Photon 4:382–387CrossRefGoogle Scholar
  5. 5.
    Leosson K, Nikolajsen T, Boltasseva A, Bozhevolnyi SI (2006) Long-range surface plasmon polariton nanowire waveguides for device applications. Opt Express 14:314–319CrossRefGoogle Scholar
  6. 6.
    Leosson K, Rosenzveig T, Hermannsson PG, Boltasseva A (2008) Compact plasmonic variable optical attenuator. Opt Express 16:15546–15562CrossRefGoogle Scholar
  7. 7.
    Tassin P, Koschny T, Kafesaki M, Soukoulis CM (2012) A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat Photon 6:259–264CrossRefGoogle Scholar
  8. 8.
    Park S, Ju J, Kim J, Kim M, Park S, Lee J, Lee W, Lee M (2009) Sub-dB/cm propagation loss in silver stripe waveguides. Opt Express 17:697–702CrossRefGoogle Scholar
  9. 9.
    Leosson K, Ingason AS, Agnarsson B, Kossoy A, Olafsson S, Gather MC (2013) Ultra-thin gold films on transparent polymers. Nanophotonics 2:3–11CrossRefGoogle Scholar
  10. 10.
    Boltasseva A, Nikolajsen T, Leosson K, Kjaer K, Larsen MS, Bozhevolnyi SI (2005) Integrated optical components utilizing long range surface plasmon polaritons. J Lightw Technol 23:413-422CrossRefGoogle Scholar
  11. 11.
    Hövel M, Gompf B, Dressel M (2010) Dielectric properties of ultrathin metal films around the percolation threshold. Phys Rev B 81:035402CrossRefGoogle Scholar
  12. 12.
    Søndergaard T., Bozhevolnyi SI (2007) Slow-plasmon resonant nanostructures: scattering and field enhancements. Phys Rev B 75:073402CrossRefGoogle Scholar
  13. 13.
    Tonchev S, Parriaux O (2013) Recovery of lost photons in plasmon-mediated transmission through continuous metal film. Plasmonics 8(2):949–954. doi: 10.1007/s11468-013-9495-0 CrossRefGoogle Scholar
  14. 14.
    Leosson K, et al (2012) Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors. Opt Lett 37:4026–4028CrossRefGoogle Scholar
  15. 15.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New YorkGoogle Scholar
  16. 16.
    Olmon RL, Slovick B, Johnson TW, Shelton D, Oh S-H, Boreman GD, Raschke MBOptical dielectric function of gold. Phys Rev B 86:235147Google Scholar
  17. 17.
    Wiener A, Fernández-Domínguez AI, Horsfield AP, Pendry JB, Maier SA (2012) Nonlocal effects in the nanofocusing performance of plasmonic tips. Nano Lett 12:3308–3314CrossRefGoogle Scholar
  18. 18.
    Kossoy A, Simakov D, Olafsson S, Leosson K (2013) Determining surface coverage of ultra-thin gold films from X-ray reflectivity measurements. Thin Solid Films 536:50–53. doi: 10.1016/j.tsf.2013.03.057 CrossRefGoogle Scholar
  19. 19.
    Lahoud N, Mattiussi GA, Berini P (2006) Thermally activated variable attenuation of long-range surface plasmon-polariton waves. J Lightwave Technol 24:4391–4402CrossRefGoogle Scholar
  20. 20.
    Houbertz R, et al (2003) Inorganicorganic hybrid materials for application in optical devices. Thin Solid Films 442:194–200CrossRefGoogle Scholar
  21. 21.
    Chen L-Y, Tsai W-S, Hsu W-H, Chen K-Y, Wang W-S (2007) Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination. IEEE J Quantum Electron 43:303–310CrossRefGoogle Scholar
  22. 22.
    Romanov VP, Ulyanov SV, Uzdin VM, Nowak G, Shokuie K, Zabel H (2010) Separation of the diffuse contribution to the specular X-ray scattering of multilayer films. Phys Rev B 82:165416CrossRefGoogle Scholar
  23. 23.
    Schlomka JP, Tolan M, Schwalowsky L, Seeck OH, Stettner J, Press W (1995) X-ray diffraction from Si/Ge layers: diffuse scattering in the region of total external reflection. Phys Rev B 51:2311–2321CrossRefGoogle Scholar
  24. 24.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370-4379CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ilya Slovinsky
    • 1
    • 2
    • 3
  • Gudmundur K. Stefansson
    • 1
  • Anna Kossoy
    • 1
  • Kristjan Leosson
    • 1
  1. 1.Science InsituteUniversity of IcelandReykjavikIceland
  2. 2.Ioffe Physical Technical Institute of the Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Saint Petersburg Academic University-Nanotechnology Research and Education Center of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations