, Volume 8, Issue 4, pp 1597–1605 | Cite as

Large Optical Nonlinearity of Surface Plasmon Modes on Thin Gold Films

  • Alexander Huck
  • Dirk Witthaut
  • Shailesh Kumar
  • Anders S. Sørensen
  • Ulrik L. Andersen


We investigate the optical nonlinear effects of a long-range surface plasmon polariton mode propagating on a thin gold film. These effects may play a key role in the design of future nanophotonic circuits as they allow for the realization of active plasmonic elements. We demonstrate a significant enhancement of the transmission on a timescale below a millisecond as well as a phase shift exceeding 2π already for modest peak powers of 150 mW. On the contrary, slow effects suppress the transmission on a millisecond timescale.


Long-range surface plasmon polariton Gold stripe Nonlinear optics 



Financial support from the Villum Kann Rasmussen Foundation, the German Research Foundation (DFG grant number WI 3415/1-1), and the Carlsberg Foundation is gratefully acknowledged. We are thankful to Alexandra Boltasseva for providing the samples with plasmonic waveguides.


  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  2. 2.
    Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2006) Quantum optics with surface plasmons. Phys Rev Lett 97:053002CrossRefGoogle Scholar
  3. 3.
    Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD (2007) Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450:402–406CrossRefGoogle Scholar
  4. 4.
    Chang DE, Sørensen AS, Demler EA, Lukin MD (2007) A single-photon transistor using nanoscale surface plasmons. Nat Phys 3:807–812CrossRefGoogle Scholar
  5. 5.
    Witthaut D, Lukin MD, Sørensen AS (2012) Photon sorters and QND detectors using single photon emitters. Europhys Lett 97:50007CrossRefGoogle Scholar
  6. 6.
    Krasavin A, Zheludev N (2004) Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl Phys Lett 84:1416–1418CrossRefGoogle Scholar
  7. 7.
    Nikolajsen T, Leosson K, Bozhevolnyi S (2004) Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 85:5833–5835CrossRefGoogle Scholar
  8. 8.
    MacDonald KF, Samson ZL, Stockman MI, Zheludev NI (2009) Ultrafast active plasmonics. Nat Photonics 3:55–58CrossRefGoogle Scholar
  9. 9.
    Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics. Springer, BerlinCrossRefGoogle Scholar
  10. 10.
    Altewischer E, van Exter MP, Woerdman JP (2002) Plasmon-assisted transmission of entangled photons. Nature 418:304–306CrossRefGoogle Scholar
  11. 11.
    Fasel S, Robin F, Moreno E, Erni D, Gisin N, Zbinden H, Phys Rev Lett (2005) Energy-time entanglement preservation in plasmon-assisted light transmission 94:110501CrossRefGoogle Scholar
  12. 12.
    Huck A, Smolka S, Lodahl P, Rensen ASS, Boltasseva A, Janousek J, Andersen UL (2009) Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys Rev Lett 102:246802CrossRefGoogle Scholar
  13. 13.
    Bloembergen N (1999) Surface nonlinear optics: a historical overview. Appl Phys B 68:289–293CrossRefGoogle Scholar
  14. 14.
    Simon HJ, Mitchell DE, Watson JG (1974) Optical second-harmonic generation with surface plasmons in silver films. Phys Rev Lett 33:1531–1534CrossRefGoogle Scholar
  15. 15.
    Hache F, Ricard D, Flytzanis C (1986) Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects. J Opt Soc Am B 3:1647–1655CrossRefGoogle Scholar
  16. 16.
    Flytzanis C, Hache F, Kelin MC, Ricard D, Rossignal PH (1991) Nonlinear optics in composite-materials. 1. Semiconductor and metal crystallites in dielectrics. Prog Opt 29:321CrossRefGoogle Scholar
  17. 17.
    Wysin GM, Simon HJ, Deck RT (1981) Optical bistability with surface plasmons. Opt Lett 6:30–32CrossRefGoogle Scholar
  18. 18.
    Stegeman GI, Burke JJ, Hall DG (1982) Nonlinear optics of long range surface plasmons. Appl Phys Lett 41:906–908CrossRefGoogle Scholar
  19. 19.
    Stegeman GI, Seaton CT (1985) Nonlinear integrated optics. J Appl Phys 58:R57–R78CrossRefGoogle Scholar
  20. 20.
    Davoyan AR, Shadrivov IV, Kivshar YS (2008) Nonlinear plasmonic slot waveguides. Opt Express 16:21209–21214CrossRefGoogle Scholar
  21. 21.
    Huang J-H, Chang R, Leung P-T, Tsai DP (2009) Nonlinear dispersion relation for surface plasmon at a metal–Kerr medium interface. Opt Commun 282:1412–1415CrossRefGoogle Scholar
  22. 22.
    Pacifici D, Lezec HJ, Atwater HA (2007) All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat Photonics 1:402–406CrossRefGoogle Scholar
  23. 23.
    Temnov VV, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, Garcia-Martin J-M, Thomay T, Leitenstorfer A, Bratschitsch R (2010) Active magneto-plasmonics in hybrid metal–ferromagnet structures. Nat Photonics 4:107–111CrossRefGoogle Scholar
  24. 24.
    Smith DD, Yoon Y, Boyd RW, Campbell JK, Baker LA, Crooks RM, George M (1999) z-scan measurement of the nonlinear absorption of a thin gold film. J Appl Phys 86:6200–6205CrossRefGoogle Scholar
  25. 25.
    Xenogiannopoulou E, Aloukos P, Couris S, Kaminska E, Piotrowska A, Dynowska E (2007) Third-order nonlinear optical properties of thin sputtered gold films. Opt Commun 275:217–222CrossRefGoogle Scholar
  26. 26.
    Yang G, Guan D, Wang W, Wu W, Chen Z (2004) The inherent optical nonlinearities of thin silver films. Opt Mater 25:439–443CrossRefGoogle Scholar
  27. 27.
    Wang WT, Guan DY, Yang G, Yang GZ, Zhou YL, Lu HB, Chen ZH (2005) Nonlinear optical properties of thin iron films grown on MgO (100) by pulsed laser deposition. Thin Solid Films 471:86–90CrossRefGoogle Scholar
  28. 28.
    Charbonneau R, Berini P, Berolo E, Lisicka-Shrzek E (2000) Experimental observation of plasmon polariton waves supported by a thin metal film of finite width. Opt Lett 25:844–846CrossRefGoogle Scholar
  29. 29.
    Boltasseva A, Nikolajsen T, Leosson K, Kjaer K, Larsen MS, Bozhevolnyi SI (2005) Integrated optical components utilizing long-range surface plasmon polaritons. J Light Technol 23:413–422CrossRefGoogle Scholar
  30. 30.
    Hache F, Ricard D, Flytzanis C, Kreibig U (1988) The optical Kerr effect in small metal particles and metal colloids: the case of gold. Appl Phys A Mater Sci Process 47:347–357Google Scholar
  31. 31.
    Boyd R (2008) Nonlinear optics. Academic Press, New YorkGoogle Scholar
  32. 32.
    de Rougemont F, Frey R (1988) Two-level approach to saturation properties in semiconductor materials. Phys Rev B 37:1237–1244CrossRefGoogle Scholar
  33. 33.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  34. 34.
    Samson ZL, MacDonald KF, Zheludev NI (2009) Femtosecond active plasmonics: ultrafast control of surface plasmon propagation. J Opt A Pure Appl Opt 11:114031CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alexander Huck
    • 1
  • Dirk Witthaut
    • 2
    • 3
  • Shailesh Kumar
    • 1
  • Anders S. Sørensen
    • 2
  • Ulrik L. Andersen
    • 1
  1. 1.Department of PhysicsTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.QUANTOP, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  3. 3.Network Dynamics GroupMax-Planck-Institute for Dynamics and Self-OrganizationGöttingenGermany

Personalised recommendations