Plasmonics

, Volume 8, Issue 3, pp 1387–1394

Controllable Mode Hybridization and Interaction Within a Plasmonic Cavity Formed by Two Bimetallic Gratings

Article

Abstract

We theoretically study mode hybridization and interaction among surface plasmon polariton Bloch wave mode, Fabry–Perot cavity mode, and waveguide mode within a plasmonic cavity composed by two parallel planar bimetallic gratings. Four hybridized modes result from mode hybridization between surface plasmon polariton Bloch wave modes on the two gratings are observed. By changing the dielectric environment, mode hybridization behavior can be manipulated. Importantly, waveguide-plasmon polariton mode due to hybridization between grating supported surface plasmon polariton Bloch wave mode and cavity supported waveguide mode is observed. We demonstrate that surface plasmon polariton Bloch wave mode and Fabry–Perot cavity mode with the same mode symmetry can interact by presenting an anticrossing behavior, which can be controlled by laterally shifting one grating with respect to the other that causes a phase difference shift of the two involving modes. The proposed plasmonic cavity offers potentials for subwavelength lithography, tunable plasmonic filter, and controllable light-matter interaction.

Keywords

Surface plasmon polariton Bloch wave Plasmonic cavity Bimetallic gratings Anticrossing 

Supplementary material

11468_2013_9550_MOESM1_ESM.docx (1.8 mb)
ESM 1(DOCX 1852 kb)

References

  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830CrossRefGoogle Scholar
  2. 2.
    Miyazaki HT, Kurokawa Y (2006) Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys Rev Lett 96(9):97401CrossRefGoogle Scholar
  3. 3.
    Sorger VJ, Oulton RF, Yao J, Bartal G, Zhang X (2009) Plasmonic Fabry–Perot nanocavity. Nano Lett 9(10):3489–3493CrossRefGoogle Scholar
  4. 4.
    Artar A, Yanik AA, Altug H (2009) Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl Phys Lett 95:051105CrossRefGoogle Scholar
  5. 5.
    Ameling R, Langguth L, Hentschel M, Mesch M, Braun PV, Giessen H (2010) Cavity-enhanced localized plasmon resonance sensing. Appl Phys Lett 97(25):253116CrossRefGoogle Scholar
  6. 6.
    Chen J, Li Z, Yue S, Gong Q (2010) Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit. Appl Phys Lett 97:041113CrossRefGoogle Scholar
  7. 7.
    Li T, Wang S, Cao J, Liu H, Zhu S (2010) Cavity-involved plasmonic metamaterial for optical polarization conversion. Appl Phys Lett 97(26):261113CrossRefGoogle Scholar
  8. 8.
    Christ A, Tikhodeev S, Gippius N, Kuhl J, Giessen H (2003) Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett 91(18):183901CrossRefGoogle Scholar
  9. 9.
    Parsons J, Hooper I, Barnes W, Sambles J (2009) Interactions between Fabry–Perot and nanohole resonances in metallo-dielectric plasmonic nanostructures. J Mod Opt 56(10):1199–1204CrossRefGoogle Scholar
  10. 10.
    Yanai A, Levy U (2010) Tunability of reflection and transmission spectra of two periodically corrugated metallic plates, obtained by control of the interactions between plasmonic and photonic modes. J Opt Soc Am B 27(8):1523–1529CrossRefGoogle Scholar
  11. 11.
    Fu L, Schau P, Frenner K, Osten W, Weiss T, Schweizer H, Giessen H (2011) Mode coupling and interaction in a plasmonic microcavity with resonant mirrors. Phys Rev B 84(23):235402CrossRefGoogle Scholar
  12. 12.
    Chanda D, Shigeta K, Truong T, Lui E, Mihi A, Schulmerich M, Braun PV, Bhargava R, Rogers JA (2011) Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat Commun 2:479CrossRefGoogle Scholar
  13. 13.
    Ameling R, Dregely D, Giessen H (2011) Strong coupling of localized and surface plasmons to microcavity modes. Opt Lett 36(12):2218–2220CrossRefGoogle Scholar
  14. 14.
    Ameling R, Giessen H (2010) Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity. Nano Lett 10:4394–4398CrossRefGoogle Scholar
  15. 15.
    Kobyakov A, Mafi A, Zakharian AR, Darmanyan SA, Sparks KB (2008) Fundamental and higher-order Bloch surface plasmons in planar bimetallic gratings on silicon and glass substrates. J Opt Soc Am B 25(9):1414–1421CrossRefGoogle Scholar
  16. 16.
    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3):131–314CrossRefGoogle Scholar
  17. 17.
    Porto J, Garcia-Vidal F, Pendry J (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83(14):2845–2848CrossRefGoogle Scholar
  18. 18.
    Krishnan A, Thio T, Kim T, Lezec H, Ebbesen T, Wolff P, Pendry J, Martin-Moreno L, Garcia-Vidal F (2001) Evanescently coupled resonance in surface plasmon enhanced transmission. Opt Commun 200(1–6):1–7CrossRefGoogle Scholar
  19. 19.
    Kobyakov A, Zakharian AR, Mafi A, Darmanyan SA (2008) Semi-analytical method for light interaction with 1D-periodic nanoplasmonic structures. Opt Express 16(12):8938–8957CrossRefGoogle Scholar
  20. 20.
    Moharam M, Grann EB, Pommet DA, Gaylord T (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 12(5):1068–1076CrossRefGoogle Scholar
  21. 21.
    Kobyakov A, Zakharian AR, Gundu KM, Darmanyan SA (2009) Giant optical resonances due to gain-assisted Bloch surface plasmons. Appl Phys Lett 94(15):151111CrossRefGoogle Scholar
  22. 22.
    Cai W, Genov DA, Shalaev VM (2005) Superlens based on metal-dielectric composites. Phys Rev B 72(19):193101CrossRefGoogle Scholar
  23. 23.
    Etchegoin P, Le Ru E, Meyer M (2007) Erratum: “An analytic model for the optical properties of gold” [J. Chem. Phys. 125, 164705 (2006)]. J Chem Phys 127(18):189901CrossRefGoogle Scholar
  24. 24.
    Stegeman GI, Burke JJ (1983) Longrange surface plasmons in electrode structures. Appl Phys Lett 43(3):221CrossRefGoogle Scholar
  25. 25.
    Luo X, Ishihara T (2004) Subwavelength photolithography based on surface-plasmon polariton resonance. Opt Express 12(14):3055–3065CrossRefGoogle Scholar
  26. 26.
    Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4(6):1085–1088CrossRefGoogle Scholar
  27. 27.
    Ge W, Wang C, Xue Y, Cao B, Zhang B, Xu K (2011) Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity. Opt Express 19(7):6714–6723CrossRefGoogle Scholar
  28. 28.
    Song HY, Kim S, Magnusson R (2009) Tunable guided-mode resonances in coupled gratings. Opt Express 17(26):23544–23555CrossRefGoogle Scholar
  29. 29.
    Wu Z, Nelson RL, Haus JW, Zhan Q (2008) Plasmonic electro-optic modulator design using a resonant metal grating. Opt Lett 33(6):551–553CrossRefGoogle Scholar
  30. 30.
    Wurtz G, Pollard R, Zayats A (2006) Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys Rev Lett 97(5):57402CrossRefGoogle Scholar
  31. 31.
    Mu W, Ketterson J (2011) Long-range surface plasmon polaritons propagating on a dielectric waveguide support. Opt Lett 36(23):4713–4715CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsHarbin Institute of TechnologyHarbinChina
  2. 2.Key Lab of Micro-Optics and Photonic Technology of Heilongjiang ProvinceHarbinChina

Personalised recommendations