, Volume 8, Issue 2, pp 1265–1271 | Cite as

Photoconductivity of Silver Nanoparticle Ensembles on Quartz Glass (SiO2) Supports Assisted by Localized Surface Plasmon Excitations

  • E. V. Vashchenko
  • T. A. Vartanyan
  • F. Hubenthal


We have studied the conductivity and photoconductivity in silver nanoparticle ensembles on quartz glass substrates. We observed a significant increase of the photoconductivity if the localized surface plasmon resonance in the metal nanoparticles was excited. A detailed analysis of the temperature dependence of the conductivity as well as dependences of the conductivity and photoconductivity on the amount of deposited metal led to the mechanism of the charge transfer in these structures. We found that the primary role in this mechanism is due to defects in the quartz glass structure which act as traps for electrons.


Silver nanoparticle ensembles Photoconductivity Plasmon resonance Traps Hopping conductivity Activation energy 



This work has been supported by RFBR 12–02031922. Elena Vashchenko is grateful to DAAD for a scholarship and the hospitality of Kassel University’s staff. Discussions with V.V. Khromov, S.G. Przhibelskii, and N.B. Leonov are gratefully acknowledged.


  1. 1.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486CrossRefGoogle Scholar
  3. 3.
    Köhler M, Fritzsche W (2007) Nanotechnology. An introduction to nanostructuring techniques. WILEY, WeinheimGoogle Scholar
  4. 4.
    Abeles B, Sheng P, Coutts MD, Arie Y (1975) Structural and electrical properties of granular metal films. Adv Phys. doi: 10.1080/00018737500101431
  5. 5.
    Ostadal I, Hill RM (2001) Dc conduction of stable ultrathin Pt films below the percolation threshold. Phys Rev B 64:1–4. doi: 10.1103/PhysRevB.64.033404 CrossRefGoogle Scholar
  6. 6.
    Wenzel T, Bosbach J, Stietz F, Träger F (1999) In situ determination of the shape of supported metal clusters during growth. Surf Sci 432:257–264. doi: 10.1016/S0039-6028(99)00546-4 CrossRefGoogle Scholar
  7. 7.
    Hubenthal F, Hendrich C, Vartanyan TA, Träger F (2012) Determination of fundamental morphological parameters of supported nanoparticle ensembles: extracting the functional dependence between nanoparticle shape and size. Plasmonics. doi: 10.1007/s11468-012-9408-7
  8. 8.
    Hubenthal F (2009) Noble metal nanoparticles and their tailoring with laser light. Eur J Phys 30:S49–S61. doi: 10.1088/0143-0807/30/4/S05 CrossRefGoogle Scholar
  9. 9.
    Chopra Kasturi L (1969) Thin film phenomena. McGraw-Hill, New YorkGoogle Scholar
  10. 10.
    Gritsenko VA, Ivanov RM, Morokov YN (1995) Electronic structure of amorphous SiO2: experiment and numerical simulation. JETP 81:1208–1216Google Scholar
  11. 11.
    Afanasev VV, Stesmans A (2007) Internal photoemission at interfaces of high-κ insulators with semiconductors and metals. J Appl Phys 102:1–27. doi: 10.1063/1.2799091 Google Scholar
  12. 12.
    Klimov V (2011) Nanoplasmonics. Pan Stanford Publishing, SingaporeGoogle Scholar
  13. 13.
    Hubenthal F (2011) Noble metal nanoparticles: synthesis and optical properties. In: Andrews DL, Scholes GD, Wiederrecht GP (eds) Comprehensive Nanoscience and Technology, vol 1. Academic Press, Oxford, pp 375–435CrossRefGoogle Scholar
  14. 14.
    Wokaun A, Gordon JP, Liao PF (1982) Radiation damping in surface-enhanced Raman scattering. Phys Rev Lett 48:957–960. doi: 10.1103/PhysRevLett.48.1574 CrossRefGoogle Scholar
  15. 15.
    Nasyrov KA, Shaimeev SS, Gritsenko VA (2009) Trap-assisted tunneling hole injection in SiO2: experiment and theory. JETP 109:786–793CrossRefGoogle Scholar
  16. 16.
    Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer, New YorkCrossRefGoogle Scholar
  17. 17.
    Liu D, Clark SJ, Robertson J (2010) Oxygen vacancy levels and electron transport in Al2O3. Appl Phys Lett 96:032905. doi: 10.1063/1.3293440 CrossRefGoogle Scholar
  18. 18.
    Spechta M, Städele M, Jakschik S, Schröder U (2004) Transport mechanisms in atomic-layer-deposited Al2O3 dielectrics. Appl Phys Lett 84:16CrossRefGoogle Scholar
  19. 19.
    Vashchenko EV, Gladskikh IA, Vartanyan TA, Przhibelskii SG, Khromov VV (2013) Conductivity and photoconductivity of granular silver films on sapphire substrates. Optical Journal. In printGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • E. V. Vashchenko
    • 1
  • T. A. Vartanyan
    • 1
  • F. Hubenthal
    • 2
  1. 1.St. Petersburg State University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  2. 2.Institut für Physik und Center for Interdisciplinary Nanostructure Science and Technology—CINSaTUniversität KasselKasselGermany

Personalised recommendations