, Volume 8, Issue 2, pp 1259–1263 | Cite as

Novel Dielectric-Loaded Plasmonic Waveguide for Tight-Confined Hybrid Plasmon Mode

  • Youqiao Ma
  • Gerald Farrell
  • Yuliya Semenova
  • Hau Ping Chan
  • Hongzhou Zhang
  • Qiang Wu


In this paper, a novel metal-dielectric waveguide structure is proposed to support hybrid long range surface plasmon polaritons (LRSPPs) with a highly confined mode field. The simulation results showed that our proposed structure has better mode confinement and propagation length compared to that of conventional dielectric-loaded surface plasmon polaritons (DLSPPs) waveguides. This structure offers greater flexibility for the design of surface plasmon polaritons (SPPs) waveguides by altering the trade-off between mode confinement and propagation length. The proposed structure has significant potential for application in highly integrated photonic circuits.


Surface plasmon resonant Optical waveguide Dielectric-loaded plasmonic waveguide 



This work was supported by Dublin Institute of Technology under the Fiosraigh Research Scholarship, Science Foundation Ireland under grant no. 11/TIDA/B2051, 07/SK/I1200, 07/SK/I1200-STTF11, and the Open Fund of the State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China.


  1. 1.
    Kirchain R, Kimerling L (2007) A roadmap for nanophotonics. Nat Photon 1:303–305CrossRefGoogle Scholar
  2. 2.
    Barnes WL, Dereux A, Ebbesen T (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  3. 3.
    Chiu NF, Lee JH, Kuan CH, Wu KC, Lee CK, Lin CW (2007) Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device. Appl Phys Lett 91:083114CrossRefGoogle Scholar
  4. 4.
    Li Q, Song Y, Zhou G, Su YK, Qiu M (2010) Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss. Opt Lett 35:3153–3155CrossRefGoogle Scholar
  5. 5.
    Han Z, Elezzabi AY, Van V (2010) Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform. Opt Lett 35:502–504CrossRefGoogle Scholar
  6. 6.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511CrossRefGoogle Scholar
  7. 7.
    Krasavin AV, Zayats AV (2011) Guiding light at the nanoscale: numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides. Opt Lett 36:3127–3129CrossRefGoogle Scholar
  8. 8.
    Joo YH, Jung MJ, Yoon JW, Song SH, Won HS, Park S, Ju JJ (2008) Long-range surface plasmon polaritons on asymmetric double-electrode structures. Appl Phys Lett 92(161103)Google Scholar
  9. 9.
    Berini P (2007) Long-range surface plasmon-polariton waveguides in silica. J Appl Phys 102:053105CrossRefGoogle Scholar
  10. 10.
    Zia R, Selker MD, Catrysse PB, Brongersma ML (2004) Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A 21:2442–2446CrossRefGoogle Scholar
  11. 11.
    Chen JJ, Li Z, Yue S, Gong QH (2009) Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides. Opt Express 17:23603–23609CrossRefGoogle Scholar
  12. 12.
    Tobias H, Jacek G, Sergey IB (2010) Long-range dielectric-loaded surface plasmon-polariton waveguides. Opt Express 18:23009–23015CrossRefGoogle Scholar
  13. 13.
    Sun XH, Xia LP, Du JL, Yin SY, Du CL (2012) A hybrid long-range surface plasmon waveguide comprising a narrow metal stripe surrounded by the low-index dielectric regions. Opt Commun 285:4359–4363CrossRefGoogle Scholar
  14. 14.
    Bao G, Chen ZM, Wu HJ (2005) Adaptive finite-element method for diffraction gratings. JOSA A. 22:1106–1114CrossRefGoogle Scholar
  15. 15.
    Oulton RF, Bartal G, Pile DFP, Zhang X (2008) Confinement and propagation characteristics of subwavelength plasmonic modes. New J Phys 10:105018CrossRefGoogle Scholar
  16. 16.
    Dai DX, He SL (2009) A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express 17:16646–16653CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Youqiao Ma
    • 1
  • Gerald Farrell
    • 1
  • Yuliya Semenova
    • 1
  • Hau Ping Chan
    • 2
  • Hongzhou Zhang
    • 3
    • 4
  • Qiang Wu
    • 1
  1. 1.Photonics Research Center, School of Electronic and Communications EngineeringDublin Institute of TechnologyDublin 8Ireland
  2. 2.Department of Electronic EngineeringCity University of Hong KongHong KongChina
  3. 3.School of PhysicsTrinity College DublinDublin 2Ireland
  4. 4.CRANNTrinity College DublinDublin 2Ireland

Personalised recommendations