Plasmonics

, Volume 8, Issue 2, pp 1177–1184 | Cite as

Magnetic–Plasmonic FePt@Ag Core–Shell Nanoparticles and Their Magnetic and SERS Properties

  • Nguyen T. T. Trang
  • Trinh T. Thuy
  • Koichi Higashimine
  • Derrick M. Mott
  • Shinya Maenosono
Article

Abstract

Magnetic–plasmonic FePt@Ag core–shell nanoparticles (NPs) with different Ag shell thicknesses were successfully synthesized using a seed-mediated method. They presented not only localized surface plasmon resonance in the visible region, but also superparamagnetic behavior at room temperature. When normalized by the weight of FePt, the saturation magnetization of the FePt@Ag NPs was found to be higher than that of FePt NPs, suggesting that the Ag shell effectively passivated the FePt NP surfaces, avoiding the direct interaction between the FePt core and surface capping ligands that typically forms a magnetically dead layer in FePt NPs. Despite the high colloidal stability and the small size of the FePt@Ag NPs, the NPs were easily separated using a permanent magnet. The surface enhanced Raman scattering (SERS) activity of the FePt@Ag NPs was then examined using thiophenol as a Raman reporter molecule and was found to be equivalent to that of Ag NPs. Moreover, the SERS activity of the FePt@Ag NPs was enhanced when a magnetic field was applied during the preparation of the SERS substrate (FePt@Ag NP film). These FePt@Ag NPs hold promise as dual-functional sensing probes for environmental and diagnostic applications.

Keywords

Iron–platinum nanoparticle Silver shell Magnetic separation Surface enhanced Raman scattering 

Notes

Acknowledgments

The authors thank Dr. Mikio Koyano and Ms. Dao T. Ngoc Anh for their assistance with the Raman measurements. NTTT thanks the Vietnamese Government for a 322 scholarship.

Supplementary material

11468_2013_9529_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1231 kb)

References

  1. 1.
    Sotiriou GA, Hirt AM, Lozach PY, Teleki A, Krumeich F, Pratsinis SE (2011) Hybrid, silica-coated, janus-like plasmonic-magnetic nanoparticles. Chem Mater 23:1985–1992CrossRefGoogle Scholar
  2. 2.
    Smolensky ED, Neary MC, Zhou Y, Berquo TS, Pierre VC (2011) Fe3O4@organic@Au: core-shell nanocomposites with high saturation magnetization as magnetoplasmonic MRI contrast agents. Chem Commun 47:2149–2151CrossRefGoogle Scholar
  3. 3.
    Gao J, Zhang B, Gao Y, Pan Y, Zhang X, Xu B (2007) Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: a simple preparation for multifunctional nanostructures. J Am Chem Soc 129:11928–11935CrossRefGoogle Scholar
  4. 4.
    He S, Zhang H, Delikanli S, Qin Y, Swihart MT, Zeng A (2009) Bifunctional magneto-optical FePt-CdS hybrid nanoparticles. J Phys Chem C 113:87–90CrossRefGoogle Scholar
  5. 5.
    Lin HY, Chen YF, Wu JG, Wang DI, Chen CC (2006) Carrier transfer induced photoluminescence change in metal–semiconductor core-shell nanostructures. Appl Phys Lett 88:161911–161913CrossRefGoogle Scholar
  6. 6.
    Jiang J, Gu H, Shao H, Devlin E, Papaefthymiou GC, Ying JY (2008) Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv Mater 20:4403–4407CrossRefGoogle Scholar
  7. 7.
    Levin CS, Hofmann C, Ali TA, Kelly AT, Morosan E, Nordlander P, Whitmire KH, Halas NJ (2009) Magnetic-plasmonic core-shell nanoparticles. ACS Nano 3:1379–1388CrossRefGoogle Scholar
  8. 8.
    de la Presa P, Multigner M, Morales MP, Rueda T, Fernández-Pinel E, Hernando A (2007) Synthesis and characterization of FePt/Au core-shell nanoparticles. J Magn Magn Mater 316:e753–e755CrossRefGoogle Scholar
  9. 9.
    Lu LY, Wang D, Xu XG, Wang HC, Miao J, Jiang Y (2011) Low temperature magnetic hardening in self-assembled FePt/Ag core-shell nanoparticles. Mater Chem Phys 129:995–999CrossRefGoogle Scholar
  10. 10.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668CrossRefGoogle Scholar
  11. 11.
    Trinh TT, Mott D, Thanh NTK, Maenosono S (2011) One-pot synthesis and characterization of well defined core-shell structure of FePt@CdSe nanoparticles. RSC Adv 1:100–108CrossRefGoogle Scholar
  12. 12.
    La Mer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854CrossRefGoogle Scholar
  13. 13.
    Prodan E, Radloff C, Halas NJ, Nordlander PA (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422CrossRefGoogle Scholar
  14. 14.
    Maenosono S, Saita S (2006) Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia. IEEE Trans Magn 42:1638–1642CrossRefGoogle Scholar
  15. 15.
    Wu XW, Liu C, Li L, Jones P, Chantrell RW, Weller D (2004) Nonmagnetic shell in surfactant-coated FePt nanoparticles. J Appl Phys 95:6810–6812CrossRefGoogle Scholar
  16. 16.
    Trinh TT, Ozaki T, Maenosono S (2011) Influence of surface ligands on magnetic property of FePt clusters: a density functional theory calculation. Phys Rev B 83:104413CrossRefGoogle Scholar
  17. 17.
    Taylor RM, Huber DL, Monson TC, Esch V, Sillerud LO (2012) Structural and magnetic characterization of superparamagnetic iron platinum nanoparticle contrast agents for magnetic resonance imaging. J Vac Sci Technol B 30:02C101–02C107CrossRefGoogle Scholar
  18. 18.
    Jung HY, Park YK, Park S, Kim SK (2007) Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles. Anal Chim Acta 602:236–243CrossRefGoogle Scholar
  19. 19.
    Li X, Cao M, Zhang H, Zhou L, Cheng S, Yao JL, Fan LJ (2012) Surface-enhanced Raman scattering-active substrates of electrospun polyvinyl alcohol/gold-silver nanofibers. J Colloid Interface Sci 382:28–35CrossRefGoogle Scholar
  20. 20.
    Tanaka Y, Maenosono S (2008) Amine-terminated water-dispersible FePt nanoparticles. J Magn Magn Mater 320:L121–L124CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nguyen T. T. Trang
    • 1
    • 2
  • Trinh T. Thuy
    • 1
  • Koichi Higashimine
    • 1
  • Derrick M. Mott
    • 1
  • Shinya Maenosono
    • 1
  1. 1.School of Materials ScienceJapan Advanced Institute of Science and Technology (JAIST)NomiJapan
  2. 2.Institute of Materials ScienceVietnam Academy of Science and Technology (VAST)HanoiVietnam

Personalised recommendations