, Volume 8, Issue 2, pp 763–767 | Cite as

Electron Energy Loss and One- and Two-Photon Excited SERS Probing of “Hot” Plasmonic Silver Nanoaggregates

  • Shima Kadkhodazadeh
  • Jakob B. Wagner
  • Virginia Joseph
  • Janina Kneipp
  • Harald Kneipp
  • Katrin Kneipp


We report electron energy loss spectroscopy (EELS) and one- and two-photon excited surface-enhanced Raman scattering (SERS) and hyper Raman studies on plasmonic silver nanoaggregates. By comparison with computations, EELS imaging reveals an inverse relationship between local field intensity in an optical experiment and electron energy loss intensity at energies corresponding to excitation wavelengths used for optical probing. This inverse relation exists independent on specific nanoaggregate geometries and is mainly controlled by the gap size between the particles forming the aggregate. The ratio between two- and one-photon excited SERS measured at different excitation wavelengths provides information about local fields in the hottest spots and their dependence on the photon energy. Our data verify experimentally the predicted increase of local optical fields in the hot spots with increasing wave lengths. The reported findings show new experimental ways to characterize local fields of plasmonic nanostructures. This is of particular importance for complex structures which are not easily approachable by computations.


Surface-enhanced Raman scattering (SERS) Electron energy loss spectroscopy (EELS) Plasmonic nanoatructures Silver nanoaggregates Plasmonic dimers Two-photon excitation 



We thank the Director of the Center for Electron Nanoscopy, Andrew Burrows, for supporting the project. We also would like to thank Mildred Dresselhaus, Massachusetts Institute of Technology, for reading the manuscript and for valuable comments.


  1. 1.
    Stockman MI (2011) Opt Express 19:22029CrossRefGoogle Scholar
  2. 2.
    Novotny L, van Hulst N (2011) Nature Photonics 5:83CrossRefGoogle Scholar
  3. 3.
    Kneipp K (2007) Phys Today 60:40CrossRefGoogle Scholar
  4. 4.
    Wustholz KL, Henry AI, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP (2010) J Am Chem Soc 132:10903CrossRefGoogle Scholar
  5. 5.
    Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Nature 464:392CrossRefGoogle Scholar
  6. 6.
    Kneipp K, Yang W, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Phys Rev Lett 78:1667CrossRefGoogle Scholar
  7. 7.
    Kneipp J, Kneipp H, Kneipp K (2006) Proc Natl Acad Sci U S A 103:17149CrossRefGoogle Scholar
  8. 8.
    Xu HX, Kall M (2006) Estimating SERS properties of silver-particle aggregates through generalized Mie theory. In: Surface-enhanced raman scattering: physics and applications. Springer, Berlin. vol 103, pp 87–103Google Scholar
  9. 9.
    Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Chem Rev 111:3913CrossRefGoogle Scholar
  10. 10.
    McMahon JM, Gray SK, Schatz GC (2011) Phys Rev B 83:5CrossRefGoogle Scholar
  11. 11.
    Stockman MI, Shalaev VM, Moskovits M, Botet R, George TF (1992) Phys Rev B 46:2821CrossRefGoogle Scholar
  12. 12.
    Li KR, Stockman MI, Bergman DJ (2003) Phys Rev Lett 91:227402CrossRefGoogle Scholar
  13. 13.
    Weber ML, Litz JP, Masiello DJ, Willets KA (2012) Acs Nano 6:1839CrossRefGoogle Scholar
  14. 14.
    Nelayah J, Kociak M, Stephan O, de Abajo FJG, Tence M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan LM, Colliex C (2007) Nat Phys 3:348CrossRefGoogle Scholar
  15. 15.
    Koh AL, Bao K, Khan I, Smith WE, Kothleitner G, Nordlander P, Maier SA, McComb DW (2009) Acs Nano 3:3015CrossRefGoogle Scholar
  16. 16.
    Koh AL, Fernandez-Dominguez AI, McComb DW, Maier SA, Yang JKW (2011) Nano Lett 11:1323CrossRefGoogle Scholar
  17. 17.
    Nicoletti O, Wubs M, Mortensen NA, Sigle W, van Aken PA, Midgley PA (2011) Opt Express 19:15371CrossRefGoogle Scholar
  18. 18.
    Duan HG, Fernandez-Dominguez AI, Bosman M, Maier SA, Yang JKW (2012) Nano Lett 12:1683CrossRefGoogle Scholar
  19. 19.
    Chu MW, Myroshnychenko V, Chen CH, Deng JP, Mou CY, de Abajo FJG (2009) Nano Lett 9:399CrossRefGoogle Scholar
  20. 20.
    Yurtsever A, van der Veen RM, Zewail AH (2012) Science 335:59CrossRefGoogle Scholar
  21. 21.
    de Abajo FJG, Kociak M (2008) Phys Rev Lett 100:4Google Scholar
  22. 22.
    Hohenester U, Ditlbacher H, Krenn JR (2009) Phys Rev Lett 103:4CrossRefGoogle Scholar
  23. 23.
    Lee PC, Meisel D (1982) J Phys Chem 86:3391CrossRefGoogle Scholar
  24. 24.
    Haran G (2010) Accounts Chem Res 43:1135CrossRefGoogle Scholar
  25. 25.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS, Dresselhaus MS (2002) Nonlinear Raman probe of single molecules attached to colloidal silver and gold clusters. In: Shalaev VM (ed) Optical properties of nanostructured random media. Springer, Berlin, p 227CrossRefGoogle Scholar
  26. 26.
    Johnson PB, Christy RW (1972) Phys Rev B 6:4370CrossRefGoogle Scholar
  27. 27.
    McMahon JM, Li SZ, Ausman LK, Schatz GC (2012) J Phys Chem C 116:1627CrossRefGoogle Scholar
  28. 28.
    Zabala N, Rivacoba A, Echenique PM (1997) Phys Rev B 56:7623CrossRefGoogle Scholar
  29. 29.
    Mirsaleh-Kohan N, Iberi V, Simmons PD, Bigelow NW, Vaschillo A, Rowland MM, Best MD, Pennycook SJ, Masiello DJ, Guiton BS, Camden JP (2012) J Phys Chem Lett 3:2303CrossRefGoogle Scholar
  30. 30.
    Shegai T, Li ZP, Dadosh T, Zhang ZY, Xu HX, Haran G (2008) Proc Natl Acad Sci U S A 105:16448CrossRefGoogle Scholar
  31. 31.
    Stockman MI (2006) Electromagnetic theory of SERS. In: Kneipp K, Moskowits M, Kneipp H (eds) Surface-enhanced Raman scattering: physics and applications. Springer, Berlin, p 47CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Shima Kadkhodazadeh
    • 1
  • Jakob B. Wagner
    • 1
  • Virginia Joseph
    • 2
    • 3
  • Janina Kneipp
    • 2
    • 3
  • Harald Kneipp
    • 4
  • Katrin Kneipp
    • 4
  1. 1.Center for Electron NanoscopyTechnical University DenmarkKgs. LyngbyDenmark
  2. 2.Department of ChemistryHumboldt University BerlinBerlinGermany
  3. 3.Federal Institute for Materials Research and Testing, BerlinBerlinGermany
  4. 4.Department of PhysicsTechnical University DenmarkKgs. LyngbyDenmark

Personalised recommendations