, Volume 8, Issue 2, pp 755–761 | Cite as

Numerical Investagation of a Castle-like Contour Plasmonic Nanoantenna with Operating Wavelengths Ranging in Ultraviolet–Visible, Visible Light, and Infrared Light

  • Yuan-Fong Chau
  • Wei-Hsiang Lin
  • Min-Jer Sung
  • Ci-Yao Jheng
  • San-Cai Jheng
  • Din Ping Tsai


We propose a new design of a plasmonic nanoantenna and numerically study its optical properties by means of the 3D finite element method. The nanoantenna is composed of two identical castle-like contour nanometal-filled dielectric media inside the hollows. We examine the influence of the contour thickness, gap width, and dielectric media filled inside the hollows on the antenna resonance conditions. Through these simulations, we show that it is possible to tune an antenna with a constant length over a broad spectral range (ranging in ultraviolet–visible, visible light, and infrared light).


Plasmonic nanoantenna Finite element method Localized surface plasmon resonance 



Y.-F. Chau acknowledges the financial support from the National Science Council of the Republic of China (Taiwan) under Contracts NSC 99-2112-M-231-001-MY3, NSC 101-3113-P-002-021-, and NSC-100-2632-E-231-001-MY3.


  1. 1.
    Aksu S, Yanik AA, Adato R, Artar A, Huang M, Altug H (2010) High-throughput nanofabrication of plasmonic infrared nanoantenna arrays for vibrational nanospectroscopy. Nano Lett 10:2511–2518CrossRefGoogle Scholar
  2. 2.
    Sederberg S, Elezzabi AY (2011) Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared. Opt Express 19:15532–15537CrossRefGoogle Scholar
  3. 3.
    Wang L, Xu X (2007) High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging. Appl Phys Lett 90:261105–261107CrossRefGoogle Scholar
  4. 4.
    Joshi BP, Wei QH (2008) Cavity resonances of metal-dielectric-metal nanoantennas. Opt Express 16:10315–10322CrossRefGoogle Scholar
  5. 5.
    Neubrech F, Pucci A, Cornelius TW, Karim S, Garcia-Etxarri A, Aizpurua J (2008) Resonant plasmonic and vibrational coupling in tailored nanoantenna for infrared detection. Phys Rev Lett 101:157403CrossRefGoogle Scholar
  6. 6.
    Chau YF, Yeh HH, Tsai DP (2010) A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole. J Electromagn Waves Appl 24:1621–1632CrossRefGoogle Scholar
  7. 7.
    Chau YF, Yeh HH, Tsai DP (2010) Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs. J Electromagn Waves Appl 24:1005–1014CrossRefGoogle Scholar
  8. 8.
    Chau YF, Yeh HH (2011) A comparative study of solid-silver and silver-shell nanodimers on surface Plasmon resonances. J Nanopart Res 13:637–644CrossRefGoogle Scholar
  9. 9.
    Wang L, Cai L, Zhang J, Bai W, Hu H, Song G (2011) Design of plasmonic bowtie nanoring array with high sensitivity and reproducibility for surface-enhanced Raman scattering spectroscopy. J Raman Spectrosc 42:1263–1266CrossRefGoogle Scholar
  10. 10.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 4(12):4370–4379CrossRefGoogle Scholar
  11. 11.
    Gresho PM, Sani RL (2000) Incompressible flow and finite element method, vol 1 and 2. Wiley, New YorkGoogle Scholar
  12. 12.
    Monk P (2003) Finite element methods for Maxwell’s equations. Clarendon, Oxford, p 85CrossRefGoogle Scholar
  13. 13.
    Okamoto T, Kawata S (eds) (2001) Near-field optics and surface plasmon polaritons. Springer, Berlin, p 99Google Scholar
  14. 14.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  15. 15.
    Coronado EA, Schatz GC (2003) Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach. J Chem Phys 119:3926–3934CrossRefGoogle Scholar
  16. 16.
    Xu HX (2005) Comment on “Theoretical study of single molecule fluorescence in a metallic nanocavity”. Appl Phys Lett 87:066101CrossRefGoogle Scholar
  17. 17.
    Li ZP, Yang ZL, Xu HX (2006) Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”. Phys Rev Lett 97:079701CrossRefGoogle Scholar
  18. 18.
    Lin YZ, Hong LQ, Xiong R, Peng LZ, Bin R, Xing XH, Qun TZ (2010) FDTD for plasmonics: applications in enhanced Raman spectroscopy. Chinese Sci Bull 55:2635–2642CrossRefGoogle Scholar
  19. 19.
    Kim S, Jin J, Kim YJ, Park IY, Kim Y, Kim SW (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 453:757–760CrossRefGoogle Scholar
  20. 20.
    Chau YF, Yeh HH, Tsai DP (2008) Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair. Appl Opt 47:5557–5561CrossRefGoogle Scholar
  21. 21.
    Mahmoud MA, Snyder B, El-Sayed MA (2010) Surface plasmon fields and coupling in the hollow gold nanoparticles and surface enhancement Raman spectroscopy. Theory and experiment. J Phys Chem C 114:7436–7443CrossRefGoogle Scholar
  22. 22.
    Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96:233901CrossRefGoogle Scholar
  23. 23.
    Cao Q, Lalanne P (2002) Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett 88:057403CrossRefGoogle Scholar
  24. 24.
    Chau YF (2009) Surface plasmon effects excited by the dielectric hole in a silver-shell nanospherical pair. Plasmonics 4:253–259CrossRefGoogle Scholar
  25. 25.
    Chau YF, Jiang ZH (2011) Plasmonics effects of nanometal embedded in a dielectric substrate. Plasmonics 6:581–589CrossRefGoogle Scholar
  26. 26.
    Wang H, Brandl DW, Nordlander P, Halas NJ (2007) Tunable plasmonic nanostructures: from fundamental nanoscale optics to surface-enhanced spectroscopies. Acc Chem Res 40:53–62CrossRefGoogle Scholar
  27. 27.
    Politano A, Chiarello G (2009) Tuning the lifetime of the surface plasmon upon sputtering. Phys Status Solidi-Rapid Res Lett 3:136–138CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yuan-Fong Chau
    • 1
  • Wei-Hsiang Lin
    • 1
  • Min-Jer Sung
    • 1
  • Ci-Yao Jheng
    • 1
  • San-Cai Jheng
    • 1
  • Din Ping Tsai
    • 2
    • 3
  1. 1.Department of Electronic EngineeringChien Hsin University of Science and TechnologyZhongli City, Taoyuan CountyRepublic of China
  2. 2.Graduate Institute of Applied PhysicsNational Taiwan UniversityTaipeiTaiwan
  3. 3.Research Center for Applied SciencesAcademia SinicaTaipeiTaiwan

Personalised recommendations