, Volume 8, Issue 2, pp 745–748

Plasmon-Coupled Nanostructures Comprising Finite Number of Gold Particles

  • Shay Halamish
  • Gennady Eidelshtein
  • Alexander Kotlyar


We report a simple method for preparation of plasmonic nanostructures containing two, three, four, and five closely spaced 15-nm gold particles. The structures were separated from each other and purified to greater than 90 % by electrophoresis. The plasmon absorption spectra of the structures are redshifted with respect to the spectrum of gold nanoparticles not connected to each other. The magnitude of the redshift is directly proportional to the number of nanoparticles in the structure.


Gold nanoparticles Surface plasmon resonance shift Nanomaterials TEM 

Supplementary material

11468_2012_9466_MOESM1_ESM.doc (1014 kb)
ESM 1(DOC .99 mb)


  1. 1.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRefGoogle Scholar
  2. 2.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081CrossRefGoogle Scholar
  3. 3.
    Leuvering JHW, Goverde BC, Thal PJHM, Schuurs AHWM (1983) A homogeneous sol particle immunoassay for human chorionic gonadotrophin using monoclonal antibodies. J Immunol Methods 60:9–23CrossRefGoogle Scholar
  4. 4.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  5. 5.
    Sujit Kumar Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862CrossRefGoogle Scholar
  6. 6.
    Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transf 111:1–35CrossRefGoogle Scholar
  7. 7.
    Zanchet D, Micheel CM, Parak WJ, Gerion D, Williams SC, Alivisatos AP (2002) Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings. J Phys Chem B 106:11758–11763CrossRefGoogle Scholar
  8. 8.
    Claridge SA, Liang HW, Basu SR, Fréchet JMJ, Alivisatos AP (2008) Isolation of discrete nanoparticle—DNA conjugates for plasmonic applications. Nano Lett 8:1202–1206CrossRefGoogle Scholar
  9. 9.
    Sheikholeslami S, Jun Y-W, Jain PK (2010) Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 10:2655–2660CrossRefGoogle Scholar
  10. 10.
    Lubitz I, Kotlyar A (2011) G4-DNA-coated gold nanoparticles: synthesis and assembly. Bioconjug Chem 22:2043–2047CrossRefGoogle Scholar
  11. 11.
    Novak JP, Feldheim DL (2000) Assembly of phenylacetylene-bridged silver and gold nanoparticle arrays. J Am Chem Soc 122(16):3979–3980. doi:10.1021/ja000477a CrossRefGoogle Scholar
  12. 12.
    Wang Y, Chen G, Yang M, Silber G, Xing S, Tan LH, Wang F, Feng Y, Liu X, Li S, Chen H (2010) A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nat Commun 1:87–94Google Scholar
  13. 13.
    Chen G, Wang Y, Tan LH, Yang M, Tan LS, Chen Y, Chen H (2009) High-purity separation of gold nanoparticle dimers and trimers. J Am Chem Soc 131:4218–4219CrossRefGoogle Scholar
  14. 14.
    Bidault S, Polman (2012) Water-based assembly and purification of plasmon-coupled gold nanoparticle dimers and trimers. International J of Optics ID 387274, 5p. doi:10.1155/2012/387274
  15. 15.
    Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, García de Abajo F (2008) Modelling the optical response of gold nanoparticles. J Chem Soc Rev 37:1792–1805CrossRefGoogle Scholar
  16. 16.
    Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707CrossRefGoogle Scholar
  17. 17.
    Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham AG (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Shay Halamish
    • 1
  • Gennady Eidelshtein
    • 1
  • Alexander Kotlyar
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, George S. Wise Faculty of life Sciences and The Center of Nanoscience and NanotechnologyTel Aviv UniversityTel AvivIsrael

Personalised recommendations