, Volume 8, Issue 2, pp 699–704 | Cite as

Localized Surface Plasmon Resonance (LSPR) Biosensor for the Protein Detection

  • Maximilien Cottat
  • Néné Thioune
  • Ana-Maria Gabudean
  • Nathalie Lidgi-Guigui
  • Monica Focsan
  • Simion Astilean
  • Marc Lamy de la Chapelle


In this paper, we investigate the ability of the gold nanorods (GNRs) to detect some proteins and demonstrate their potential to be used as plasmonic nanobiosensors. The GNRs were synthesized by a two-step seed-mediated growth procedure at room temperature. Firstly, a seed solution of gold nanoparticles was synthesized in the presence of cetyltrimethylammonium bromide surfactant and, subsequently, incorporated with appropriate amount of silver nitrate and tetrachloroauric acid solutions to grow GNRs with average length of 50 nm and diameter of 14 nm. We study the interaction of GNRs with proteins whose molecular weight varies from 6.5 up to 75 kDa. We investigate the resulting solutions by means of UV–vis absorption spectroscopy to determine the effect of the proteins characteristics on the shift of the localized surface plasmon resonance (LSPR). We show that for the case when proteins are in large excess compared to the GNRs concentration, whatever the protein is, the LSPR shift is constant and does not depend on the protein molecular weight. Moreover, we have been able to demonstrate that the sensitivity of such LSPR sensor is around 10–9 M/nm on a concentration range from 10–10 to 10–8 M. Some comparison with finite-difference time-domain simulations have also shown that the number of proteins adsorbed at the GNRs surface is around 40.


Localize surface plasmon resonance (LSPR) Gold nanorods (GNRs) Biosensor Protein 



This work was supported by the Programme Hubert Curien Brancusi, by the ANCS, project number PN II Capacitati/Brancusi, 489/2011 and by the Nanoantenna European project (FP7-HEALTH-F5-2009 241818).


  1. 1.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefGoogle Scholar
  2. 2.
    Barbillon G, Bijeon J-L, Plain J, de la Chapelle ML, Adam P-M, Royer P (2007) Biological and chemical gold nanosensors based on localized surface plasmon resonance. Gold Bull 40:240–244CrossRefGoogle Scholar
  3. 3.
    Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077CrossRefGoogle Scholar
  4. 4.
    Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3:485–491CrossRefGoogle Scholar
  5. 5.
    Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape and size dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237CrossRefGoogle Scholar
  6. 6.
    Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:109–116CrossRefGoogle Scholar
  7. 7.
    Haes A, Van Duyne RP (2004) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379:920–930CrossRefGoogle Scholar
  8. 8.
    Whitney AV, Elam JW, Zou S, Zinovev AV, Stair PC, Schatz GC, Van Duyne RP (2005) Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. J Phys Chem B 109:20522–20528CrossRefGoogle Scholar
  9. 9.
    Grand J, Adam P-M, Grimault A-S, Vial A, Lamy de la Chapelle M, Bijeon J-L, Kostcheev S, Royer P (2006) Plasmonics 1:135–139CrossRefGoogle Scholar
  10. 10.
    Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  11. 11.
    Gabudean AM, Biro D, Astilean S (2011) Localized surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods. J Mol Struct 993:420–424CrossRefGoogle Scholar
  12. 12.
    Law W-C, Yong K-T, Baev A, Hu R, Prasad PN (2009) Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods. Opt Express 17:19041–19046CrossRefGoogle Scholar
  13. 13.
    Chen C-D, Cheng S-F, Chau L-K, Wang CRC (2007) Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens Bioelectron 22:926–932CrossRefGoogle Scholar
  14. 14.
    Huang H, He C, Zeng Y, Xia X, Yu X, Yi P, Chen Z (2009) A novel label-free multi-throughput optical biosensor based on localized surface plasmon resonance. Biosens Bioelectron 24:2255–2259CrossRefGoogle Scholar
  15. 15.
    Parab HJ, Jung C, Lee J-H, Park HG (2010) A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens Bioelectron 26:667–673CrossRefGoogle Scholar
  16. 16.
    Barbillon G, Bijeon J-L, Plain J, de la Chapelle ML, Adam P-M, Royer P (2007) Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance. Surf Sci 601:5057–5061CrossRefGoogle Scholar
  17. 17.
    Barbillon G, Bijeon J-L, Bouillard J-S, Plain J, Lamy de la Chapelle M, Adam P-M, Royer P (2008) J Microsc 229:385–389CrossRefGoogle Scholar
  18. 18.
    Toderas F, Iosin M, Astilean S (2009) Luminescence properties of gold nanorods. Nucl Inst Methods Phys Res B Beam Interact Mater Atoms 267:400–402CrossRefGoogle Scholar
  19. 19.
    Yu C, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79:572–579CrossRefGoogle Scholar
  20. 20.
    Iosin M, Toderas F, Baldeck PL, Astilean S (2009) Study of protein–gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J Mol Struct 924–926:196–200CrossRefGoogle Scholar
  21. 21.
    Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994CrossRefGoogle Scholar
  22. 22.
    Le Ru EC, Grand J, Sow I, Somerville WRC, Etchegoin PG, Treguer-Delapierre M, Charron G, Félidj N, Lévi G, Aubard J (2011) Nano Lett 11:5013–5019CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Barchiesi D, Lidgi-Guigui N, de la Chapelle ML (2012) Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor. Opt Commun 285:1619–1623CrossRefGoogle Scholar
  25. 25.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  26. 26.
    Yu C, Vargehse L, Irudayaraj J (2007) Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes. Langmuir 23:9114–9119CrossRefGoogle Scholar
  27. 27.
    Carter DC, He XM, Munson SH, Twigg PD, Gernert KM, Broom MB, Miller TY (1989) Three-dimensional structure of human serum albumin. Science 244:1195–1198CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Maximilien Cottat
    • 1
  • Néné Thioune
    • 1
  • Ana-Maria Gabudean
    • 2
  • Nathalie Lidgi-Guigui
    • 1
  • Monica Focsan
    • 2
  • Simion Astilean
    • 2
  • Marc Lamy de la Chapelle
    • 1
  1. 1.Université Paris 13, Sorbonne Paris Cité, Laboratoire CSPBAT, CNRS (UMR 7244)BobignyFrance
  2. 2.Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-SciencesFaculty of Physics, Babes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations