Plasmonics

, Volume 8, Issue 2, pp 625–629 | Cite as

Plasmonic Nanostructures as Accelerators for Nanoparticles: Optical Nanocannon

Article

Abstract

We suggest a model of an optical structure that allows to accelerate nanoparticles to velocities on the order of tens of centimeters per second using low-intensity external optical fields. The nano-accelerator system employs metallic V-grooves which concentrate the electric field in the vicinity of their bottoms and creates large optical gradient forces for the nanoparticles in that groove. The conditions are found when this optical force tends to eject particles away from the groove.

Keywords

Plasmonic nanostructures Optical manipulation Nanofocusing Field enhancement Plasmonic nano-accelerator 

References

  1. 1.
    Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070CrossRefGoogle Scholar
  2. 2.
    Praetorius NP, Mandal TK (2007) Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul 1:37–51CrossRefGoogle Scholar
  3. 3.
    Suh J, Dawson M, Hanes J (2005) Real-time multiple-particle tracking: applications to drug and gene delivery. Adv Drug Deliv Rev 57:63–78CrossRefGoogle Scholar
  4. 4.
    Dawson M, Wirtz D, Hanes J (2003) Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J Biol Chem 278:50393–50401CrossRefGoogle Scholar
  5. 5.
    Dawson M, Krauland E, Wirtz D, Hanes J (2004) Transport of polymeric nanoparticle gene carriers in gastric mucus. Biotechnol Prog 20:851–857CrossRefGoogle Scholar
  6. 6.
    Kitson C, Angel B, Judd D, Rothery S, Severs NJ, Dewar A, Huang L, Wadsworth SC, Cheng SH, Geddes DM, Alton EW (1999) The extra- and intracellular barriers to lipid and adenovirus-mediated pulmonary gene transfer in native sheep airway epithelium. Gene Ther 6:534–546CrossRefGoogle Scholar
  7. 7.
    Pardridge WM (2007) shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 59:141–152CrossRefGoogle Scholar
  8. 8.
    De Geest BG, McShane MJ, Demeester J, De Smedt SC, Hennink WE (2008) Microcapsules ejecting nanosized species into the environment. J Am Chem Soc 130:14480–14482CrossRefGoogle Scholar
  9. 9.
    Dahne L (2009) Nanoparticle missiles from exploding polyelectrolyte capsules. Angew Chem Int Ed 48:4106–4108CrossRefGoogle Scholar
  10. 10.
    Liu L, Wang W, Ju XJ, Xie R, Chu LY (2010) Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter 6:3759–3763CrossRefGoogle Scholar
  11. 11.
    Bedard MF, De Geest BG, Moehwald H, Sukhorukov GB, Skirtach AG (2009) Direction specific release from giant microgel-templated polyelectrolyte microcontainers. Soft Matter 5:3927–3931CrossRefGoogle Scholar
  12. 12.
    Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci U S A 94:4853–4860CrossRefGoogle Scholar
  13. 13.
    Svoboda K, Block ST (1994) Biological application of optical forces. Annu Rev Biophys Biomol Struct 23:247–285CrossRefGoogle Scholar
  14. 14.
    Novotny L, Bian RX, Xie XS (1997) Theory of nanometric optical twizer. Phys Rev Lett 79:645–648CrossRefGoogle Scholar
  15. 15.
    Righini M, Volpe G, Girard C, Petrov D, Quidant R (2008) Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys Rev Lett 100:186804CrossRefGoogle Scholar
  16. 16.
    Michael P (1998) Laser tweezers in cell biology, vol 55. Academic, San DiegoGoogle Scholar
  17. 17.
    Juan ML, Righini M, Quidant R (2011) Plasmon nano-optical tweezers. Nat Photonics 3:349–356CrossRefGoogle Scholar
  18. 18.
    Wang K, Schonbrun E, Crozier KB (2009) Propulsion of gold nanoparticles with surface Plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film. Nano Lett 9:2623–2629CrossRefGoogle Scholar
  19. 19.
    Kawata S, Tani T (1996) Optically driven Mie particles in an evanescent field along a channeled waveguide. Opt Lett 21:1768–1770CrossRefGoogle Scholar
  20. 20.
    Zakharov SD, Kazaryan MA, Korotkov NP (1994) Shock acceleration of particles in a laser beam. JETP Lett 60:322–324Google Scholar
  21. 21.
    Huang L, Martin OJF (2008) Reversal of the optical force in a plasmonic trap. Opt Lett 33:3001–3003CrossRefGoogle Scholar
  22. 22.
    Gramotnev DK (2005) Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach. J App Phys 98:104302CrossRefGoogle Scholar
  23. 23.
    Gramotnev DK, Pile DFP, Vogel MW, Zhang X (2007) Local electric field enhancement during nanofocusing of plasmons by a tapered gap. Phys Rev B 75:035431CrossRefGoogle Scholar
  24. 24.
    Sondergaard T, Bozhevolnyi SI, Beermann J, Novikov SM, Devaux E, Ebbesen TW (2010) Resonant plasmon nanofocusing by closed tapered gaps. Nano Lett 10:291–295CrossRefGoogle Scholar
  25. 25.
    Shalin AS (2011) Optical accelerator of nanoparticles. J Commun Technol Electron 56:976–984CrossRefGoogle Scholar
  26. 26.
    Nieto-Vesperinas M, Chaumet P, Rahmani A (2004) Near-field photonic forces. Phil Trans R Soc Lond A 362:719–737CrossRefGoogle Scholar
  27. 27.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  28. 28.
    Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of continuous media, 2nd edn. Pergamon, New YorkGoogle Scholar
  29. 29.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  30. 30.
    Novotny L, Hecht B (2006) Principles of nanooptics. Cambridge University Press, New YorkCrossRefGoogle Scholar
  31. 31.
    Johnson PB, Christy RW (1972) Optical constant of the noble metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  32. 32.
    Novotny L, Henkel C (2008) Van der Waals versus optical interaction between metal nanoparticles. Opt Lett 33:1029–1031CrossRefGoogle Scholar
  33. 33.
    Sukhov S, Dogariu A (2011) Negative nonconservative forces: optical “tractor beams” for arbitrary objects. Phys Rev Lett 107:203602CrossRefGoogle Scholar
  34. 34.
    Chen J, Ng J, Lin Z, Chan CT (2011) Optical pulling force. Nat Photonics 5:531–534CrossRefGoogle Scholar
  35. 35.
    Iida T, Ishihara H (2008) Theory of resonant radiation force exerted on nanostructures by optical excitation of their quantum states: from microscopic to macroscopic descriptions. Phys Rev B 77:245319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Ulyanovsk Branch of Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of SciencesUlyanovskRussia
  2. 2.Technological Research InstituteUlyanovsk State UniversityUlyanovskRussia
  3. 3.CREOL, The College of Optics and PhotonicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations