Advertisement

Plasmonics

, Volume 8, Issue 2, pp 619–624 | Cite as

Comparison of Gold and Silver/Gold Bimetallic Surface for Highly Sensitive Near-infrared SPR Sensor at 1550 nm

  • Jerome HottinEmail author
  • Edy Wijaya
  • Laurent Hay
  • Sophie Maricot
  • Mohamed Bouazaoui
  • Jean-Pierre Vilcot
Article

Abstract

A large majority of surface plasmon resonance (SPR) sensors reported in the literature are designed to operate in the visible electromagnetic spectrum. However, the near-infrared, particularly at the telecommunications wavelength of 1550 nm, is also especially attractive for SPR sensing applications. In fact, SPR sensors operating in this region benefit from narrower resonance and deeper field penetration. In this paper, we report a theoretical and experimental study of an SPR sensor operating at a fixed wavelength of 1550 nm. The influence of the choice of metals and the interrogation methods on the sensitivity of the resulting SPR sensor is investigated. Two types of sensor chips (simple gold (Au) and bimetallic silver/Au structure) and three interrogation methods (monitoring of the position of the reflectivity minimum, the position of the centroid, and the intensity evolution of the reflectivity) are examined. We show that a refractive index resolution of 2.7 × 10−6 refractive index unit can be easily obtained, and with further optimization of the measurement system, the ultimate limit of detection is expected to be even lowered. Therefore, the approach discussed here already shows a promising potential for highly sensitive SPR sensors.

Keywords

Surface plasmon resonance Near-infrared Sensor Gold Silver 

Notes

Acknowledgments

The authors acknowledge the partial support from the European Regional Development Fund under Project INTERREG IV FW1.1.9 “Plasmobio” as well as Institut de Médecine Préventive et de Recherche Thérapeutique, IFR 114, for Biacore measurements.

References

  1. 1.
    Otto A (1968) A new method for exciting non-radioactive surface plasma oscillations. Phys Status Solidi 26:99–101CrossRefGoogle Scholar
  2. 2.
    Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Naturforschung 23A:2135–2136Google Scholar
  3. 3.
    Trévisan M, Duval A, Moreau J, Bartelian B, Canva M, Monnier V, Chevolot Y, Cloarec JP, Souteyrand E (2011) Assembling, locating, grafting and actuating permanent filaments for validation of polarimetric surface plasmon resonance imaging system. Procedia Eng 25:872–875CrossRefGoogle Scholar
  4. 4.
    Manera MG, Leo G, Curri ML, Cozzoli PD, Rella R, Siciliano P, Agostiano A, Vasanelli L (2004) Investigation on alcohol vapours/TiO2 nanocrystal thinfilms interaction by SPR technique for sensing application. Sensors Actuators B Chem 100(1–2):75–80CrossRefGoogle Scholar
  5. 5.
    Dhawan A, Duval A, Nakkach M, Barbillon G, Moreau J, Canva M, Vo-Dinh T (2011) Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging. Nanotechnology 22(16):165301CrossRefGoogle Scholar
  6. 6.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRefGoogle Scholar
  7. 7.
    Wijaya E, Lenaerts C, Maricot S, Hastanin J, Habraken S, Vilcot JP, Boukherroub R, Szunerits S (2011) Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies. Curr Opin Solid State Mater Sci 15:208–224CrossRefGoogle Scholar
  8. 8.
    Hottin J, Moreau J, Roger G, Spadavecchia J, Millot MC, Goossens M, Canva M (2007) Plasmonic DNA: towards genetic diagnosis chips. Plasmonics 2(4):201–215CrossRefGoogle Scholar
  9. 9.
    Wang J, Zhu Z, Munir A, Zhou HS (2011) Fe3O4 nanoparticles-enhanced SPR sensing for ultrasensitive sandwich bio-assay. Talanta 84(3):783–788CrossRefGoogle Scholar
  10. 10.
    Csete M, Schmatulla A, Marti O et al (2007) Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing. Appl Surf Sci 254(4):1194–1205CrossRefGoogle Scholar
  11. 11.
    Escobedo C, Vincent S, Choudhury AIK, Campbell J, Brolo AG, Sinton D, Gordon R (2011) Integrated nanohole array surface plasmon resonance sensing device using a dual-wavelength source. J Micromech Microeng 21:115001Google Scholar
  12. 12.
    Euma NS, Lee SH, Lee DR, Kwon DK, Shin JK, Kim JH, Kang SW (2003) K+-ion sensing using surface plasmon resonance by NIR light source. Sensors Actuators B 96:446–450CrossRefGoogle Scholar
  13. 13.
    Hottin J, Moreau J, Bellemain A, Canva M (2012) Biochip data normalization using multifunctional probes. Analyst 137:3119. doi: 10.1039/c2an35120j
  14. 14.
    Lee KL, Wei PK (2011) Optimization of periodic gold nanostructures for intensity-sensitive detection. Appl Phys Lett 99:083108CrossRefGoogle Scholar
  15. 15.
    Patskovsky S, Kabashin AV, Meunier M (2003) Properties and sensing characteristics of surface-plasmon resonance in infrared light. J Opt Soc Am A 20:1644–1650CrossRefGoogle Scholar
  16. 16.
    Mitsushio M, Watanabe K, Abe Y, Higo M (2010) Sensor properties and surface characterization of aluminum-deposited SPR optical fibers. Sensors Actuators A 163:1–8CrossRefGoogle Scholar
  17. 17.
    Sun Y, Song D, Li Z, Bai Y, Zhang H (2007) Surface plasmon resonance biosensor based on Hg/Ag–Au film. Anal Bioanal Chem 387:1875–1882CrossRefGoogle Scholar
  18. 18.
    Giorgis F, Descrovi E, Summonte C, Dominici L, Michelotti F (2010) Experimental determination of the sensitivity of Bloch surface waves based sensors. Opt Express 18(8):8087–8093CrossRefGoogle Scholar
  19. 19.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54(1):3–15CrossRefGoogle Scholar
  20. 20.
    Kang CD, Lee SW, Park TH, Sim SJ (2006) Performance enhancement of real-time detection of protozoan parasite, Cryptosporidium oocyst by a modified surface plasmon resonance (SPR) biosensor. Enzyme Microb Technol 39:387–390CrossRefGoogle Scholar
  21. 21.
    Delport F, Pollet J, Janssen K, Verbruggen B, Knez K, Spasic D, Lammertyn J (2012) Real-time monitoring of DNA hybridization and melting processes using a fiber optic sensor. Nanotechnology 23:065503CrossRefGoogle Scholar
  22. 22.
    Lide DR (2003) Handbook of chemistry and physics, 84th edn. CRC, Boca RatonGoogle Scholar
  23. 23.
    Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283CrossRefGoogle Scholar
  24. 24.
    Owega S, Poitras D (2007) Local similarity matching algorithm for determining SPR angle in surface plasmon resonance sensors. Sensors Actuators B Chem 123:35–41CrossRefGoogle Scholar
  25. 25.
    Baumgarten S, Robelek R (2011) Surface plasmon resonance (SPR) sensors for the rapid, sensitive detection of the cellular response to osmotic stress. Sensors Actuators B Chem 157:547–553CrossRefGoogle Scholar
  26. 26.
    Ertürk G, Uzun L, Tümer MA, Say R, Denizli A (2011) Fab fragments imprinted SPR biosensor for real-time human immunoglobulin G detection. Biosens Bioelectron 28:97–104CrossRefGoogle Scholar
  27. 27.
    Piliarik M, Homola J (2009) Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17(19):16505–16517CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jerome Hottin
    • 1
    Email author
  • Edy Wijaya
    • 2
  • Laurent Hay
    • 1
  • Sophie Maricot
    • 2
  • Mohamed Bouazaoui
    • 1
  • Jean-Pierre Vilcot
    • 2
  1. 1.Laboratoire de Physique des LasersAtomes et Molécules (PhLAM), UMR 8523, Bat. P5, Cite ScientifiqueVilleneuve d’Ascq CedexFrance
  2. 2.Institut d’Electronique, de Microélectronique, et de Nanotechnologie (IEMN)UMR 8520, Université Lille 1Villeneuve d’Ascq CedexFrance

Personalised recommendations