, Volume 8, Issue 2, pp 537–544 | Cite as

Trapping Proteins within Gold Nanoparticle Assemblies: Dynamically Tunable Hot-spots for Nanobiosensing

  • Abdennour Abbas
  • Max Fei
  • Limei Tian
  • Srikanth Singamaneni


The combination of stimuli-responsive materials with localized surface plasmon resonance nanotransducers provides new leverages in hot spot-based nanosensing. We introduce a simple and effective biodetection method based on the hydro-responsive property of (3-aminopropyl)-triethoxysilane (APTES). Gold nanoparticles were adsorbed onto hydro-responsive APTES thin film. The exposure of the film surface to an aqueous solution results in opening inter-particle gaps, allowing analyte binding. A subsequent drying of the sensor surface closes the gap by bringing the nanoparticles to the initial position, thereby trapping the analyte in the most sensitive regions (electromagnetic hot spots). In this reversible configuration, the generation and tuning of the hot spots are independent from both the presence of the analyte and the functionalization of the nanoparticles, which yields highly resolved coupled plasmon bands and provide a general and flexible nanosensing modality. Furthermore, the intensity of the hot spots can be easily and reversibly tuned to obtain picomolar sensitivity.


Gold nanoparticles Localized surface plasmon resonance Plasmon coupling Stimuli-responsive materials Nanobiosensors 



The gold nanoparticle solution was kindly provided by Dr. Ramesh Kattumenu. This work was supported by the Office of Congressionally Directed Medical Research Programs (DoD-Army) (W81XWH-11-1-0439).

Supplementary material

11468_2012_9431_MOESM1_ESM.docx (10.5 mb)
ESM 1 (DOCX 10,742 kb)


  1. 1.
    Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:6961–6968CrossRefGoogle Scholar
  2. 2.
    Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961CrossRefGoogle Scholar
  3. 3.
    Nelayah J, Kociak M, Stephan O, Garcia FJ, de Abajo M, Tence LH, Taverna D, Pastoriza-Santos I, Liz-Marzan LM, Colliex C (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3:348–353CrossRefGoogle Scholar
  4. 4.
    Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138CrossRefGoogle Scholar
  5. 5.
    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574CrossRefGoogle Scholar
  6. 6.
    Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164CrossRefGoogle Scholar
  7. 7.
    Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825CrossRefGoogle Scholar
  8. 8.
    Gandra N, Abbas A, Tian L, Singamaneni S (2012) Plasmonic planet-satellite analogues: hierarchical self-assembly of gold nanostructures. Nano Lett 12:2645–2651CrossRefGoogle Scholar
  9. 9.
    Beeram SR, Zamborini FP (2009) Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. J Am Chem Soc 131:11689–11691CrossRefGoogle Scholar
  10. 10.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRefGoogle Scholar
  11. 11.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857CrossRefGoogle Scholar
  12. 12.
    Le Ru EC, Etchegoin PG (2012) Single-molecule surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 63:65–87CrossRefGoogle Scholar
  13. 13.
    Camden JP, Dieringer JA, Zhao J, Van Duyne RP (2008) Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 41:1653–1661CrossRefGoogle Scholar
  14. 14.
    Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626CrossRefGoogle Scholar
  15. 15.
    Chen JIL, Chen Y, Ginger DS (2010) Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. J Am Chem Soc 132:9600–9601CrossRefGoogle Scholar
  16. 16.
    Sannomiya T, Hafner C, Voros J (2008) In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett 8:3450–3455CrossRefGoogle Scholar
  17. 17.
    Hall WP, Ngatia SN, Van Duyne RP (2011) LSPR biosensor signal enhancement using nanoparticle–antibody conjugates. J Phys Chem C 115:1410–1414CrossRefGoogle Scholar
  18. 18.
    Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745CrossRefGoogle Scholar
  19. 19.
    Durocher S, Rezaee A, Hamm C, Rangan C, Mittler S, Mutus B (2009) Disulfide-linked, gold nanoparticle based reagent for detecting small molecular weight thiols. J Am Chem Soc 131:2475–2477CrossRefGoogle Scholar
  20. 20.
    Tokarev I, Minko S (2012) Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers. Soft Matter 8:5980–5987CrossRefGoogle Scholar
  21. 21.
    Tokareva I, Minko S, Fendler JH, Hutter E (2004) Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Am Chem Soc 126:15950–15951CrossRefGoogle Scholar
  22. 22.
    Nergiz SZ, Singamaneni S (2011) Reversible tuning of plasmon coupling in gold nanoparticle chains using ultrathin responsive polymer film. ACS Appl Mater Interfaces 3:945–951CrossRefGoogle Scholar
  23. 23.
    Strozyk MS, Chanana M, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2012) Protein/polymer-based dual-responsive gold nanoparticles with pH-dependent thermal sensitivity. Adv Funct Mater 22:1436–1444CrossRefGoogle Scholar
  24. 24.
    Tokarev I, Tokareva I, Minko S (2008) Gold-nanoparticle-enhanced plasmonic effects in a responsive polymer gel. Adv Mater 20:2730–2734CrossRefGoogle Scholar
  25. 25.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743CrossRefGoogle Scholar
  26. 26.
    Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media IEEE Trans. Antennas Propag AP-14:302–307Google Scholar
  27. 27.
    Palik ED (1985) Handbook of optical constants of solids. Academic, BostonGoogle Scholar
  28. 28.
    Hervé A-C, Yaouanc J-J, Clément J-C, des Abbayes H, Toupet L (2002) Hemilability of the primary amine–metal bond in polyamine-(group 6) metal carbonyl complexes. J Organomet Chem 664:214–222CrossRefGoogle Scholar
  29. 29.
    Abbas A, Tian L, Kattumenu R, Halim A, Singamaneni S (2012) Freezing the self-assembly process of gold nanocrystals. Chem Commun 48:1677–1679CrossRefGoogle Scholar
  30. 30.
    van der Maaden K, Sliedregt K, Kros A, Jiskoot W, Bouwstra J (2012) Fluorescent nanoparticle adhesion assay: a novel method for surface pKa determination of self-assembled monolayers on silicon surfaces. Langmuir 28:3403–3411CrossRefGoogle Scholar
  31. 31.
    Guerrini L, MacKenzie F, Wark AW, Faulds K, Graham D (2012) Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation: correlation between plasmonic and surface-enhanced Raman scattering responses. Chem Sci 3:2262–2269CrossRefGoogle Scholar
  32. 32.
    Fan M, Thompson M, Andrade ML, Brolo AG (2010) Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing. Anal Chem 82:6350–6352CrossRefGoogle Scholar
  33. 33.
    Endo T, Kerman K, Nagatani N, Hiepa HM, Kim D-K, Yonezawa Y, Nakano K, Tamiya E (2006) Multiple label-free detection of antigen–antibody reaction using localized surface plasmon resonance-based core–shell structured nanoparticle layer nanochip. Anal Chem 78:6465–6475CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Abdennour Abbas
    • 1
  • Max Fei
    • 1
  • Limei Tian
    • 1
  • Srikanth Singamaneni
    • 1
  1. 1.Department of Mechanical Engineering and Materials ScienceWashington UniversitySt. LouisUSA

Personalised recommendations