, Volume 8, Issue 2, pp 475–480 | Cite as

Novel Apolar Plasmonic Nanostructures with Extended Optical Tunability for Sensing Applications

  • Marc Lamy de la Chapelle
  • Nicolas Guillot
  • Benoît Frémaux
  • Hong Shen
  • Timothée Toury


This paper outlines the design of complex nanostructures with apolar behavior which pave the way to a wider range of plasmon resonance tuning and applications requiring higher enhancement. These new nanostructure families are simply defined by symmetry considerations. An irreducible decomposition of optical response tensor demonstrates that nanoparticles which belong to Cn, with n ≥ 3, symmetry point group for at least one scale have an optical response insensitive on the light polarization. This is experimentally confirmed by extinction and surface-enhanced Raman-scattering measurements.


Plasmonics Metallic nanoparticles Light polarization Resonances Symmetries SERS Extinction 


  1. 1.
    Krenn JR, Ditlbacher H, Schider G, Hohenau A, Leitner A, Aussenegg FR (2003) Surface plasmon micro- and nano-optics. J Microsc 209:167–172. doi:10.1046/j.1365-2818.2003.01088.x CrossRefGoogle Scholar
  2. 2.
    Bozhevolnyi SI, Pudonin FA (1997) Two-dimensional micro-optics of surface plasmons. Phys Rev Lett 78(14):2823–2826. doi:10.1103/PhysRevLett.78.2823 CrossRefGoogle Scholar
  3. 3.
    Weeber J-C, Dereux A, Girard C, Krenn JR, Goudonnet J-P (1999) Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys Rev B 60(12): 9061–9068. doi:10.1103/PhysRevB.60.9061 CrossRefGoogle Scholar
  4. 4.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511. doi:10.1038/nature04594 CrossRefGoogle Scholar
  5. 5.
    Grandidier J, Colas des Francs G, Massenot S, Bouhelier A, Markey L, Weeber J-C, Finot C, Dereux A (2009) Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett 9(8):2935–2939. doi:10.1021/nl901314u CrossRefGoogle Scholar
  6. 6.
    Grandidier J, Colas des Francs G, Markey L, Bouhelier A, Massenot S, Weeber J-C, Dereux A (2010) Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip. Appl Phys Lett 96:063105. doi:10.1063/1.3300839 CrossRefGoogle Scholar
  7. 7.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969. doi:10.1103/PhysRevLett.85.3966 CrossRefGoogle Scholar
  8. 8.
    Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721):534–537. doi:10.1126/science.1108759 CrossRefGoogle Scholar
  9. 9.
    Boardman AD, Grimalsky VV, Kivshar YS, Koshevaya SV, Lapine M, Litchinitser NM, Malnev VN, Noginov M, Rapoport YG, Shalaev VM (2011) Active and tunable metamaterials. Laser & Photon Rev 5(2):287–307. doi:10.1002/lpor.201000012 CrossRefGoogle Scholar
  10. 10.
    Douglas P, Stokes RJ, Graham D, Smith WE (2008) Immunoassay for P38 MAPK using surface enhanced resonance Raman spectroscopy (SERRS). Analyst 133(6): 791–796CrossRefGoogle Scholar
  11. 11.
    Stokes RJ, McBride E, Wilson CG, Girkin JM, Smith WE, Graham D (2008) Surface-enhanced raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum. Appl Spectrosc 62(4):371–376CrossRefGoogle Scholar
  12. 12.
    Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90. doi:10.1038/nbt1377 CrossRefGoogle Scholar
  13. 13.
    Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) Toward a glucose biosensor based on surface-enhanced raman scattering. J Am Chem Soc 125(2):588–593. doi:10.1021/ja028255v CrossRefGoogle Scholar
  14. 14.
    Stuart DA, Yuen JM, Shah N, Lyandres O, Yonzon CR, Glucksberg MR, Walsh JT, Van Duyne RP (2006) In vivo glucose measurement by surface-enhanced raman spectroscopy. Anal Chem 78(20):7211–7215. doi:10.1021/ac061238u CrossRefGoogle Scholar
  15. 15.
    Zhang X, Shah NC, Van Duyne RP (2006) Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS). Vibr Spectrosc 42(1):2–8. doi:10.1016/j.vibspec.2006.02.001 CrossRefGoogle Scholar
  16. 16.
    Das G, Mecarini F, Gentile F, De Angelis F, Kumar HM, Candeloro P, Liberale C, Cuda G, Di Fabrizio E (2009) Nano-patterned SERS substrate: application for protein analysis vs. temperature. Biosens Bioelectron 24(6):1693–1699. doi:10.1016/j.bios.2008.08.050 CrossRefGoogle Scholar
  17. 17.
    David C, Guillot N, Shen H, Toury T, de la Chapelle ML (2010) SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. Nanotechnology 21(47):475501CrossRefGoogle Scholar
  18. 18.
    Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107(30):7426–7433. doi:10.1021/jp027749b CrossRefGoogle Scholar
  19. 19.
    McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced raman excitation spectroscopy. J Phys Chem B 109(22):11279–11285. doi:10.1021/jp050508u CrossRefGoogle Scholar
  20. 20.
    Félidj N, Aubard J, Lévi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys Rev B 65(7):075419. doi:10.1103/PhysRevB.65.075419 CrossRefGoogle Scholar
  21. 21.
    Félidj N, Aubard J, Lévi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82(18):3095–3097. doi:10.1063/1.1571979 CrossRefGoogle Scholar
  22. 22.
    Le Ru EC, Etchegoin PG, Grand J, Félidj N, Aubard J, Lévi G, Hohenau A, Krenn JR (2008) Surface enhanced Raman spectroscopy on nanolithography-prepared substrates. Curr Appl Phys 8(3–4):467–470. doi:10.1016/j.cap.2007.10.073 Google Scholar
  23. 23.
    Grand J, de la Chapelle ML, Bijeon J-L, Adam P-M, Vial A, Royer P (2005) Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays. Phys Rev B 72(3):033407. doi:10.1103/PhysRevB.72.033407 CrossRefGoogle Scholar
  24. 24.
    Billot L, de la Chapelle ML, Grimault A-S, Vial A, Barchiesi D, Bijeon J-L, Adam P-M, Royer P (2006) Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement. Chem Phys Lett 422(4–6):303–307. doi:10.1016/j.cplett.2006.02.041 CrossRefGoogle Scholar
  25. 25.
    Guillot N, Shen H, Frémaux B, Péron O, Rinnert E, Toury T, de la Chapelle ML (2010) Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength. Appl Phys Lett 97(2):023113. doi:10.1063/1.3462068 CrossRefGoogle Scholar
  26. 26.
    Raether H (2008) Surface plasmons on smooth and rough surfaces and on gratings, vol 111. Springer-Verlag, BerlinGoogle Scholar
  27. 27.
    Wokaun AW (1984) Surface plasmons on smooth and rough surfaces and on gratings, vol 38. Academic Press, New-YorkGoogle Scholar
  28. 28.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275(5303):1102–1106. doi:10.1126/science.275.5303.1102 CrossRefGoogle Scholar
  29. 29.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using Surface-Enhanced Raman Scattering (SERS). Phys Rev Lett 78(9):1667–1670. doi:10.1103/PhysRevLett.78.1667 CrossRefGoogle Scholar
  30. 30.
    Le Ru EC, Meyer M, Etchegoin PG (2006) Proof of single-molecule sensitivity in Surface Enhanced Raman Scattering (SERS) by means of a two-analyte technique. J Phys Chem B 110(4):1944–1948. doi:10.1021/jp054732v CrossRefGoogle Scholar
  31. 31.
    Lin H-Y, Huang C-H, Chang C-H, Lan Y-C, Chui H-C (2010) Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Opt Express 18(1):165–172. doi:10.1364/OE.18.000165 CrossRefGoogle Scholar
  32. 32.
    Aigouy L, Lahrech A, Grãsillon S, Cory H, Boccara AC, Rivoal JC (1999) Polarization effects in apertureless scanning near-field optical microscopy: an experimental study. Opt Lett 24(4):187–189. doi:10.1364/OL.24.000187 CrossRefGoogle Scholar
  33. 33.
    Schider G, Krenn JR, Gotschy W, Lamprecht B, Ditlbacher H, Leitner A, Aussenegg FR (2001) Optical properties of Ag and Au nanowire gratings. J Appl Phys 90(8):3825–3830. doi:10.1063/1.1404425 CrossRefGoogle Scholar
  34. 34.
    Ossikovski R, Nguyen Q, Picardi G (2007) Simple model for the polarization effects in tip-enhanced Raman spectros copy. Phys Rev B 75(4):045412. doi:10.1103/PhysRevB.75.045412 CrossRefGoogle Scholar
  35. 35.
    Gucciardi PG, Lopes M, Déturche R, Julien C, Barchiesi D, de la Chapelle ML (2008) Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy. Nanotechnology 19(21):215702CrossRefGoogle Scholar
  36. 36.
    Born M, Wolf E (2002) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University PressGoogle Scholar
  37. 37.
    Bohren C, Huffman D (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  38. 38.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer-Verlag, BerlinCrossRefGoogle Scholar
  39. 39.
    Jerphagnon J, Chemla D, Bonneville R (1978) The description of the physical properties of condensed matter using irreducible tensors. Adv Phys 27(4):609–650. doi:10.1080/00018737800101454 CrossRefGoogle Scholar
  40. 40.
    Varshalovich DA (1988) Quantum theory of angular momentum. World Scientific Publishing CoGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Marc Lamy de la Chapelle
    • 1
  • Nicolas Guillot
    • 1
  • Benoît Frémaux
    • 1
  • Hong Shen
    • 2
  • Timothée Toury
    • 2
  1. 1.Laboratoire CSPBAT UMR 7244Université Paris 13BobignyFrance
  2. 2.ICD-LNIO, UMR STMR CNRS 6279Université de technologie de TroyesTroyesFrance

Personalised recommendations