, Volume 8, Issue 2, pp 435–448 | Cite as

Determination of Fundamental Morphological Parameters of Supported Nanoparticle Ensembles

Extracting the Functional Dependence Between Nanoparticle Shape and Size
  • Frank Hubenthal
  • C. Hendrich
  • T. A. Vartanyan
  • F. Träger


A new model to extract important morphological parameters of noble metal nanoparticle ensembles with a broad size and shape distribution is presented. The technique is based on a rigorous simulation of the inhomogeneously broadened extinction profiles of nanoparticle ensembles. As input data, only experimentally accessible parameters, such as the amount of deposited material, the nanoparticle number density, and the relative size distribution of the nanoparticles, are used. The model can be applied to oblate nanoparticles, which exhibit a strong correlation between their shape and size, e.g., to supported nanoparticles generated, for example, by deposition of atoms and subsequent nucleation or by gas phase deposition. Both methods are standard preparation techniques to generate well-defined nanoparticle ensembles under ultra high vacuum conditions. We apply our model to gold and silver nanoparticles on sapphire and TiO2 supports and obtain a perfect agreement between the calculated and experimental data. More importantly, we could extract the functional dependence between the axial ratio and the radius of the nanoparticles within the ensemble and, therewith, the most probable axial ratio in the ensemble. In addition, the extinction spectrum of a nanoparticle ensemble irradiated with nanosecond pulsed laser light during growth has been successfully modeled. This demonstrates, that the model is able to describe shape changes of resonantly heated nanoparticles within the ensemble. By using the coverage as a free parameter, we could calculate from the extinction spectrum the average particle radius as well as the amount of desorbed atoms after irradiation with laser light. In summary, the model allows a fast, easy, but extensive morphological characterization of nanoparticle ensembles that exhibit a broad size and shape distribution.


Plasmonics Noble metal nanoparticles Modeling Quasistatic approximation Optical and morphological characterization 



Financial support by the EU network “NanoCluster” under grant number HPRN-CT-2002-00 and by the Deutsche Forschungsgemeinschaft, SPP 1093 is gratefully acknowledged.


  1. 1.
    Hubenthal F (2011) Noble metal nanoparticles: synthesis and applications. In: Andrews DL, Scholes GD, Wiederrecht GP (eds) Comprehensive nanoscience and Technology, vol 1. Academic Press, Oxford, pp 375–435CrossRefGoogle Scholar
  2. 2.
    Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377CrossRefGoogle Scholar
  3. 3.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  4. 4.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BK, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229CrossRefGoogle Scholar
  6. 6.
    Evlyukhin AB, Reinhardt C, Evlyukhina E, Chichkov BN (2009) Asymmetric and symmetric local surface–plasmon–polariton excitation on chains of nanoparticles. Opt Lett 34:2237CrossRefGoogle Scholar
  7. 7.
    Krenn J (2003) Nanoparticle waveguides: watching energy transfer. Nat Mater 2:210CrossRefGoogle Scholar
  8. 8.
    Zijlstra P, Chong JWM, Gu M (2009) Five−dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410CrossRefGoogle Scholar
  9. 9.
    Morarescu R, Träger F, Hubenthal F (2011) Monitoring of molecule adsorption and molecular wire formation by in situ surface plasmon resonance spectroscopy. Int J Circuits Sys Signal Process 5:407Google Scholar
  10. 10.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828CrossRefGoogle Scholar
  11. 11.
    Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Chem Phys B 108:109CrossRefGoogle Scholar
  12. 12.
    Zhao J, Jensen L, Sung J, Zou S, Schatz GC, Van Duyne RP (2007) Interaction of plasmon and molecular resonances for rhodamine 6g on silver nanoparticles. J Am Chem Soc 129:7647CrossRefGoogle Scholar
  13. 13.
    Nedyalkov N, Sakai T, Miyanishi T, Obara M (2007) Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate. Appl Phys Lett 90:123106CrossRefGoogle Scholar
  14. 14.
    Leiderer P, Bartels C, König-Birk J, Mosbacher M, Boneberg J (2004) Imaging optical near-fields of nanostructures. Appl Phys Lett 85:5370CrossRefGoogle Scholar
  15. 15.
    Boneberg J, König-Birk J, Münzer H-J, Leiderer P, Shuford KL, Schatz GC (2007) Optical near-fields of triangular nanostructures. Appl Phys A, 89:299CrossRefGoogle Scholar
  16. 16.
    Hubenthal F, Morarescu R, Englert L, Haag L, Baumert T, Träger F (2009) Parallel generation of nanochannels in fused silica with a single femtosecond laser pulse: exploiting the optical near fields of triangular nanoparticles. Appl Phys Lett 95:063101CrossRefGoogle Scholar
  17. 17.
    Morarescu R, Englert L, Kolaric B, Damman P, Vallée RAL, Baumert T, Hubenthal F, Träger F (2011) Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach. J Mater Chem 21:4076CrossRefGoogle Scholar
  18. 18.
    Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Tcontrolling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669CrossRefGoogle Scholar
  19. 19.
    Bek A, Jansen R, Ringler M, Mayilo S, Klar TA, Feldmann J (2008) Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano Lett 8:485CrossRefGoogle Scholar
  20. 20.
    Puccia A, Neubrech F, Weber D, Hong S, Toury T, Lamy de la Chapelle M (2010) Surface enhanced infrared spectroscopy using gold nanoantennas. Phys. Stat. Sol. B, 247:2071CrossRefGoogle Scholar
  21. 21.
    Alschinger M, Maniak M, Stietz F, Vartanyan T, Träger F (2003) Application of metal nanoparticles in confocal laser scanning microscopy: improved resolution by optical field enhancement. Appl Phys B 76:771CrossRefGoogle Scholar
  22. 22.
    Hubenthal F, DB Sánchez, Borg N, Schmidt H, Kronfeldt H-D, Träger F (2009) Tailor-made metal nanoparticles as SERS substrates. Appl Phys B 95:351CrossRefGoogle Scholar
  23. 23.
    Murphy T, Lucht S, Schmidt H, Kronfeldt H-D (2000) Surface-enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea-water. J. Raman Spectrosc. 31:943CrossRefGoogle Scholar
  24. 24.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface-enhanced Raman scattering and biophysics. J. Phys.: Cond. Matt. 14:R597CrossRefGoogle Scholar
  25. 25.
    Dickerson E, Dreaden E, Huang X, El-Sayed I, Chu H, Pushpanketh S, McDonald J, El-Sayed M (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57CrossRefGoogle Scholar
  26. 26.
    Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842CrossRefGoogle Scholar
  27. 27.
    Wang H, Brandl DW, Nordlander PJ, Halas NJ (2007) Plasmonic nanostructures: artificial molecules. Acc Chem Res 40:53CrossRefGoogle Scholar
  28. 28.
    Wu W, Dey D, Memis OG, Katsnelson A, Mohseni H (2008) Fabrication of large area periodic nanostructures using nanosphere photolithograpy. Nanoscale Res Lett 3:351CrossRefGoogle Scholar
  29. 29.
    Marty R, Arbouet A, Girard C, Margueritat J, Gonzalo J, Afonso CN (2009) Sculpting nanometer-sized light landscape with plasmonic nanocolumns. J Chem Phys 131:224707CrossRefGoogle Scholar
  30. 30.
    Gonzalo J, Perea A, Babonneau D, Afonso CN, Beer N, Barnes J-P, Petford-Long AK, Hole DE, Townsend PD (2005) Competing processes during the production of metal nanoparticles by pulsed laser deposition. Phys Rev B 71:125420CrossRefGoogle Scholar
  31. 31.
    Dadosh T, Sperling J, Bryant GW, Breslow R, Shegai T, Dyshel M, Haran G, Bar-Joseph I (2009) Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer. ACS Nano 3:1988CrossRefGoogle Scholar
  32. 32.
    Pastoriza-Santos I, Liz-Marzán LM (2008) Colloidal silver nanoplates. State of the art and future challenges. J Mater Chem 18:1724CrossRefGoogle Scholar
  33. 33.
    Stalmashonak A, Seifert G, Graener H (2007) Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation. Opt Lett 32:3215CrossRefGoogle Scholar
  34. 34.
    Vogel F, Träger F, Hubenthal F (2011) A new route for mass production of uniform metal nanoparticles in water by means of laser light induced processes. J Nanosci Nanotechnol 11:2368CrossRefGoogle Scholar
  35. 35.
    Hubenthal F (2007) Ultrafast dephasing time of localized surface plasmon polariton resonance and the involved damping mechanisms in colloidal gold nanoparticles. Prog Surf Sci 82:378CrossRefGoogle Scholar
  36. 36.
    Watanabe K, Menzel D, Nilius N, Freund H-J (2006) Photochemistry on metal nanoparticles. Chem Rev 106:4301CrossRefGoogle Scholar
  37. 37.
    MacDonald KF, Fedotov VA, Zheludev NI (2003) Optical nonlinearity resulting from a light-induced structural transition in gallium nanoparticles. Appl Phys Lett 82:1087CrossRefGoogle Scholar
  38. 38.
    Hicks EM, Zou S, Schatz GC, Spears KG, Van Duyne RP, Gunnarsson L, Rindzevicius T, Kasemo B, Käll M (2005) Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5:1065CrossRefGoogle Scholar
  39. 39.
    Hubenthal F (2009) Nanoparticles and their tailoring with laser light. Eur J Phys 30:S49CrossRefGoogle Scholar
  40. 40.
    Hubenthal F, Borg N, Weidner T, Siemeling U, Träger F (2009) Gold nanoparticle growth on self-assembled monolayers of ferrocenyl-substituted terpyridine on graphite. Appl Phys A 94:11CrossRefGoogle Scholar
  41. 41.
    Ouacha H, Hendrich C, Hubenthal F, Träger F (2005) Laser-assisted growth of gold nanoparticles: shaping and optical characterization. Appl Phys B 81:663CrossRefGoogle Scholar
  42. 42.
    Pauwels B, Van Tendeloo G, Bouwen W, Kuhn LT, Lievens P, Lei H, Hou M (2000) Low-energy-deposited Au clusters investigated by high-resolution electron microscopy and molecular dynamics simulations. Phys Rev B 62:10383CrossRefGoogle Scholar
  43. 43.
    Germain V, Brioude A, Ingert D, Pileni MP (2005) Silver nanodisks: size selection via centrifugation and optical properties. J Chem Phys 122:124707CrossRefGoogle Scholar
  44. 44.
    Xu G, Tazawa M, Jin P, Nakao S (2005) Surface plasmon resonance of sputteredAg films: substrate and mass thickness dependence. Appl Phys A 80:1535CrossRefGoogle Scholar
  45. 45.
    Renteria VM, Garcia-Macedo J (2005) Modeling of optical absorption of silver prolate NP’s embedded in sol–gel glasses. Mater Chem Phys 91:88CrossRefGoogle Scholar
  46. 46.
    Fu GS, Wang YL, Chu LZ, Zhou Y, Yu W, Han L, Peng YC (2005) The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pureHe, Ar or Ne gas. Europhys Lett 69:758CrossRefGoogle Scholar
  47. 47.
    Resta V, Siegel J, Bonse J, Gonzalo J, Afonso CN, Piscopiello E, Van Tenedeloo G (2006) Sharpening the shape distribution of gold nanoparticles by laser irradiation. J Appl Phys 100:084311CrossRefGoogle Scholar
  48. 48.
    Yamaguchi T, Yoshida S, Kinbara A (1974) Optical effect of the substrate on the anomalous absorption of aggregated silver films. Thin Solid Films 21:173CrossRefGoogle Scholar
  49. 49.
    Kreibig U, Genzel L (1985) Optical absorption of small metallic particles. Surf Sci 156:678CrossRefGoogle Scholar
  50. 50.
    Nahal A, Khalesifard HRM, Mostafavi-Amjad J (2004) Photothermal-induced dichroism and micro-cluster formation in Ag + -doped glasses. Appl Phys B 79:513CrossRefGoogle Scholar
  51. 51.
    Hubenthal F, Hendrich C, Träger F (2010) Damping of the localized surface plasmon polariton resonance of gold nanoparticles. Appl Phys B 100:225CrossRefGoogle Scholar
  52. 52.
    Hubenthal F, Borg N, Träger F (2008) Optical properties and ultrafast electron dynamics in gold–silver alloy and core–shell nanoparticles. Appl Phys B 93:39CrossRefGoogle Scholar
  53. 53.
    Bosbach J, Hendrich C, Stietz F, Vartanyan T, Träger F (2002) Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: influence of particle size, shape, and chemical surrounding. Phys Rev Lett 89:257404CrossRefGoogle Scholar
  54. 54.
    Hendrich C, Bosbach J, Stietz F, Hubenthal F, Vartanyan T, Träger F (2003) Chemical interface damping of the surface plasmon excitation in metal nanoparticles: a study by persistent hole burning. Appl Phys B 76:869CrossRefGoogle Scholar
  55. 55.
    T. Ziegler, C. Hendrich, F. Hubenthal, T. Vartanyan, and F. Träger (2004) Dephasing times of surface plasmon excitation in Au nanoparticles determined by persistent hole burning. Chem Phys Lett 386:319CrossRefGoogle Scholar
  56. 56.
    Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152CrossRefGoogle Scholar
  57. 57.
    Safonov VP, Shalaev VM, Markel VA, Danilova YE, Lepeshkin NN, Kim W, Rautian SG, Armstrong RL (1998) Spectral dependence of selective photomodification in fractal aggregates of colloidal particles. Phys Rev Lett 80:1102CrossRefGoogle Scholar
  58. 58.
    MacDonald KF, Fedotov VA, Pochon S, Ross KJ, Stevens GC, Zheludev NI, Brockelsby WS, Emel’yanov VI (2002) Optical control of gallium nanoparticle growth. Appl Phys Lett 80:1643CrossRefGoogle Scholar
  59. 59.
    Winterbottom WL (1967) Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall 15:303CrossRefGoogle Scholar
  60. 60.
    Wenzel T, Bosbach J, Stietz F, Träger F (1999) In situ determination of the shape of supported metal clusters during growth. Surf Sci 432:257CrossRefGoogle Scholar
  61. 61.
    Grabar KC, Brown KR, Keating CD, Stranick SJ (1997) Nanoscale characterization of gold colloid monolayers: a comparison of four techniques. Anal Chem 69:471CrossRefGoogle Scholar
  62. 62.
    Vartanyan T, Bosbach J, Stietz F, Träger F (2001) Theory of spectral hole burning for the study of ultrafast electron dynamics in metal nanoparticles. Appl Phys B 73:391CrossRefGoogle Scholar
  63. 63.
    Bosbach J, Martin D, Stietz F, Wenzel T, Träger F (1999) Laser-based method for fabricating monodisperse metallic nanoparticles. Appl Phys Lett 74:2605CrossRefGoogle Scholar
  64. 64.
    Bouwen W, Kunnen E, Temst K, Thoen P, Van Bael MJ, Vanhoutte F, Weidele H, Lievens P, Silverans RE (1999) Characterization of granular ag films grown by low-energy cluster beam deposition. Thin Solid Films 354:87CrossRefGoogle Scholar
  65. 65.
    Sihvola A (1999) Electromagnetic mixing formulas and applications. IEE, StevenageCrossRefGoogle Scholar
  66. 66.
    Li X, Tamada K, Baba A, Knoll W, Hara M (2006) Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance. J Chem Phys B 110:15755CrossRefGoogle Scholar
  67. 67.
    Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical recipes in C, 2nd Edition. Cambridge University Press, New YorkGoogle Scholar
  68. 68.
    Stietz F (2001) Laser manipulation of the size and shape of supported nanoparticles. Appl Phys A 72:381CrossRefGoogle Scholar
  69. 69.
    Bonch-Bruevich AM, Vartanyan TA, Leonov NB, Przhibel’skiǐ SG, Khromov VV (2001) Comparative investigation of the effect of heat and optical radiation on the structure of island metal films by optical fluctuation microscopy. Opt Spectrosc 91:779CrossRefGoogle Scholar
  70. 70.
    Edward D, Palik I (1985) Handbook of optical constants of solids. Academic Press, Orlando, FloridaGoogle Scholar
  71. 71.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  72. 72.
    Wakayama Y, Tanaka S (1999) Kinetics of surface droplet epitaxy and its application to fabrication of mushroomshaped metal/Si heterostructure on nanometer scale. Surf Sci 420:190CrossRefGoogle Scholar
  73. 73.
    Bäumer M, Freund H-J (1999) Metal deposits on well-ordered oxide films. Prog Surf Sci 61:127CrossRefGoogle Scholar
  74. 74.
    Vartanyan T, Bosbach J, Hendrich C, Stietz F, Träger F (2002) Theoretical foundations for size and shape selective laser-based manipulation of supported metal nanoparticles. Proc. SPIE 4636:31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Frank Hubenthal
    • 1
  • C. Hendrich
    • 1
  • T. A. Vartanyan
    • 2
  • F. Träger
    • 1
  1. 1.Institut für Physik and Center for Interdisciplinary Nanostructure Science and Technology – CINSaTUniversität KasselKasselGermany
  2. 2.St. Petersburg State University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations