, Volume 8, Issue 2, pp 361–368 | Cite as

Surface Plasmon Coupled Whispering Gallery Mode for Guided and Free-Space Electromagnetic Waves

  • Manas Ranjan Gartia
  • Meng Lu
  • Gang Logan Liu


We demonstrate theoretically that plane wave propagating in free space can be used to excite the whispering gallery mode in dielectric microresonators grown on the top of nanoplasmonic structures, with the assistance of surface plasmon wave. We have demonstrated the coupling modes using both localized and propagating surface plasmon-supporting nanostructure surfaces.


Whispering gallery mode Surface plasmon 

Supplementary material

11468_2012_9398_MOESM1_ESM.ppt (3.9 mb)
Movie M1 Movie showing WGM at 559 THz in the accompanied ppt file (PPT 3,946 kb)
11468_2012_9398_MOESM2_ESM.pdf (17 kb)
Figure S1 Surface plasmon resonance for smooth silver surface at wavelength = 370 nm (PDF 16 kb)


  1. 1.
    Vahala KJ (2003) Optical microcavities. Nature 424(6950):839–846CrossRefGoogle Scholar
  2. 2.
    Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5(7):591–596CrossRefGoogle Scholar
  3. 3.
    Sandoghdar V, Treussart F, Hare J et al (1996) Very low threshold whispering-gallery-mode microsphere laser. Phys Rev A 54(3):R1777–R1780CrossRefGoogle Scholar
  4. 4.
    Braginsky VB, Gorodetsky ML, Ilchenko VS (1989) Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys Lett A 137(7–8):393–397CrossRefGoogle Scholar
  5. 5.
    Spillane SM, Kippenberg TJ, Vahala KJ (2002) Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415(6872):621–623CrossRefGoogle Scholar
  6. 6.
    Michler P, Kiraz A, Becher C et al (2000) A quantum dot single-photon turnstile device. Science 290(5500):2282CrossRefGoogle Scholar
  7. 7.
    McKeever J, Boca A, Boozer AD et al (2004) Deterministic generation of single photons from one atom trapped in a cavity. Science 303(5666):1992–1994CrossRefGoogle Scholar
  8. 8.
    Hijlkema M, Weber B, Specht HP et al (2007) A single-photon server with just one atom. Nat Phys 3(4):253–255CrossRefGoogle Scholar
  9. 9.
    Wilk T, Webster SC, Kuhn A et al (2007) Single-atom single-photon quantum interface. Science 317(5837):488–490CrossRefGoogle Scholar
  10. 10.
    Cole RM, Sugawara Y, Baumberg JJ et al (2006) Easily coupled whispering gallery plasmons in dielectric nanospheres embedded in gold films. Phys Rev Lett 97(13):137401CrossRefGoogle Scholar
  11. 11.
    Little BE, Laine JP, Haus HA (1999) Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators. J Lightwave Technol 17(4):704–715CrossRefGoogle Scholar
  12. 12.
    Shopova SI, Blackledge CW, Rosenberger AT (2008) Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface. Appl Phys B-Lasers and Optics 93(1):183–187CrossRefGoogle Scholar
  13. 13.
    Boriskina SV, Reinhard BM (2011) Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits. Pro Natl Acad Sci USA 108(8):3147–3151CrossRefGoogle Scholar
  14. 14.
    Hamam RE, Karalis A, Joannopoulos JD et al (2007) Coupled-mode theory for general free-space resonant scattering of waves. Phys Rev A 75(5):053801CrossRefGoogle Scholar
  15. 15.
    Yariv A (1973) Coupled-mode theory for guided-wave optics. IEEE J Quant Electron 9(9):919–933CrossRefGoogle Scholar
  16. 16.
    Oraevsky AN (2002) Whispering-gallery waves. Quant Electron 32(5):377–400CrossRefGoogle Scholar
  17. 17.
    Lukosz W (1991) Principles and sensitivities of integrated optical and surface-plasmon sensors for direct affinity sensing and immunosensing. Biosens Bioelectron 6(3):215–225CrossRefGoogle Scholar
  18. 18.
    Weisser M, Menges B, Mittler-Neher S (1999) Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons. Sensors and Actuators B-Chemical 56(3):189–197CrossRefGoogle Scholar
  19. 19.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  20. 20.
    Ghaemi HF, Thio T, Grupp DE et al (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58(11):6779–6782CrossRefGoogle Scholar
  21. 21.
    Pang S, Beckham RE, Meissner KE (2008) Quantum dot-embedded microspheres for remote refractive index sensing. Appl Phys Lett 92(22):221108CrossRefGoogle Scholar
  22. 22.
    Hooper IR, Sambles JR (2002) Dispersion of surface plasmon polaritons on short-pitch metal gratings. Phys Rev B 65(16):165432CrossRefGoogle Scholar
  23. 23.
    Gartia MR, Chen Y, Liu GL (2011) Photoluminescence and cathodoluminescence from nanostructured silicon surface. Appl Phys Lett 99(15):151902CrossRefGoogle Scholar
  24. 24.
    Chen Y, Xu Z, Gartia MR et al (2011) Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching. ACS Nano 5(10):8002–8012CrossRefGoogle Scholar
  25. 25.
    Palik E (1997) Handbook of optical constants of solids. Academic, Burlington, MA, USAGoogle Scholar
  26. 26.
    Xu Z, Chen Y, Gartia MR et al (2011) Surface plasmon enhanced broadband spectrophotometry on black silver substrates. Appl Phys Lett 98(24):241904CrossRefGoogle Scholar
  27. 27.
    Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19(22):3771–3782CrossRefGoogle Scholar
  28. 28.
    Gartia MR, Hsiao A, Sivaguru M et al (2011) Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate. Nanotechnology 22(36):365203CrossRefGoogle Scholar
  29. 29.
    Hulteen JC, Vanduyne RP (1995) Nanosphere lithography—a materials general fabrication process for periodic particle array surfaces. J Vac Sci and Tech 13(3):1553–1558. A-Vacuum Surfaces and FilmsCrossRefGoogle Scholar
  30. 30.
    Chen T, Wang H, Chen G et al (2010) Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints. ACS Nano 4(6):3087–3094CrossRefGoogle Scholar
  31. 31.
    Maier SA, Kik PG, Atwater HA et al (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Manas Ranjan Gartia
    • 1
    • 3
  • Meng Lu
    • 2
    • 3
  • Gang Logan Liu
    • 2
    • 3
  1. 1.Department of Nuclear, Plasma and Radiological EngineeringUniversity of IllinoisUrbanaUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of IllinoisUrbanaUSA
  3. 3.Micro and Nanotechnology LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations