, Volume 8, Issue 2, pp 217–224 | Cite as

A Three-Dimensional Plasmonic Nanostructure with Extraordinary Optical Transmission

  • Mohamadreza Najiminaini
  • Fartash Vasefi
  • Bozena Kaminska
  • Jeffrey J. L. Carson


We report a 3D plasmonic nanostructure having an extraordinary optical transmission due to localized surface plasmon (LSP) coupling between nanoholes and nanodisks. The nanostructure contains a free-standing gold nanohole array (NHA) film above a cavity and an array of nanodisks at the bottom of the cavity that is aligned with the NHA. For the device, the LSP-mediated resonance position was dependent on the hole and nanodisk diameter as well as the separation distance. Also, the effect of LSP coupling between each hole and corresponding nanodisk became negligible for cavities deeper than 200 nm as observed as a disappearance of the LSP resonance. The greatest LSP resonance transmission and the highest electric field intensity were observed for the structure with the shallowest cavity. In addition, the structure had high surface plasmon resonance sensitivity and may have potential for surface-enhanced Raman spectroscopy and optical trapping applications.


Surface plasmon Plasmonics Nanostructure fabrication Nanohole array 



The authors thank Dr. Todd Simpson for his technical support at the Nanofab Laboratory at University of Western Ontario (UWO). This project was funded by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to Dr. Bozena Kaminska and Dr. Jeffrey J.L. Carson. Dr. Fartash Vasefi was supported by a London Regional Cancer Program Translational Breast Cancer Research Trainee Fellowship.


  1. 1.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  2. 2.
    Lesuffleur A, Im H, Lindquist NC, Lim KS, Oh S (2008) Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing. Opt Express 16:219–224CrossRefGoogle Scholar
  3. 3.
    Krishnan A, Thio T, Kim TJ, Lezec HJ, Ebbesen TW, Wolff PA, Pendry J, Martin-Moreno L, Garcia-Vidal FJ (2001) Evanescently coupled resonance in surface plasmon enhanced transmission. Opt Commun 200:1–7CrossRefGoogle Scholar
  4. 4.
    Thio T, Ghaemi HF, Lezec HJ, Wolff PA, Ebbesen TW (1999) Surface-plasmon-enhanced transmission through hole arrays in Cr films. J Opt Soc Am B 16:1743–1748CrossRefGoogle Scholar
  5. 5.
    Przybilla F, Degiron A, Laluet J, Genet C, Ebbesen TW (2006) Optical transmission in perforated noble and transition metal films. J Opt A Pure Appl Opt 8:458CrossRefGoogle Scholar
  6. 6.
    Gordon R, Brolo AG, McKinnon A, Rajora A, Leathem B, Kavanagh KL (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92:037401CrossRefGoogle Scholar
  7. 7.
    Najiminaini M, Vasefi F, Kaminska B, Carson JJL (2010) Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays. Opt Express 18:22255–22270CrossRefGoogle Scholar
  8. 8.
    van Molen D, Segerink FB, van Hulst NF, Kuipers L (2004) Influence of hole size on the extraordinary transmission through subwavelength hole arrays. Appl Phys Lett 85:4316–4318CrossRefGoogle Scholar
  9. 9.
    Yang J, Gao H, Suh JY, Zhou W, Lee MH, Odom TW (2010) Enhanced optical transmission mediated by localized plasmons in anisotropic, three-dimensional nanohole arrays. Nano Lett 10:3173–3178CrossRefGoogle Scholar
  10. 10.
    Stewart ME, Mack NH, Malyarchuk V, Soares JANT, Lee T, Gray SK, Nuzzo RG, Rogers JA (2006) Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. PNAS 103:17143–17148CrossRefGoogle Scholar
  11. 11.
    Li J, Chen S, Chou Y, Wu M, Hsueh C, Su W (2011) Effects of gold film morphology on surface plasmon resonance using periodic P3HT:PMMA/Au nanostructures on silicon substrate for surface-enhanced raman scattering. J Phys Chem C 115:24045–24053CrossRefGoogle Scholar
  12. 12.
    Li W, Hu J, Chou SY (2011) Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks. Opt Express 19:21098–21108CrossRefGoogle Scholar
  13. 13.
    Artar A, Yanik AA, Altug H (2009) Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl Phys Lett 95:051105–3CrossRefGoogle Scholar
  14. 14.
    Xu J, Kvasnicka P, Idso M, Jordan RW, Gong H, Homola J, Yu Q (2011) Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures. Opt Express 19:20493–20505CrossRefGoogle Scholar
  15. 15.
    Xu J, Guan P, Kvasnička P, Gong H, Homola J, Yu Q (2011) Light transmission and surface-enhanced raman scattering of quasi-3D plasmonic nanostructure arrays with deep and shallow fabry-perot nanocavities. J Phys Chem C 115:10996–11002CrossRefGoogle Scholar
  16. 16.
    Bezares F, Caldwell J, Glembocki O, Rendell R, Feygelson M, Ukaegbu M, Kasica R, Shirey L, Bassim N, Hosten C (2012) The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures. Plasmonics 7:143–150CrossRefGoogle Scholar
  17. 17.
    Baca AJ, Montgomery JM, Cambrea LR, Moran M, Johnson L, Yacoub J, Truong TT (2011) Optimization of nanopost plasmonic crystals for surface enhanced Raman scattering. J Phys Chem C 115:7171–7178CrossRefGoogle Scholar
  18. 18.
    Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Ant Prop 14:302Google Scholar
  19. 19.
    Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House, NorwoodGoogle Scholar
  20. 20.
    Palik ED (1985) Handbook of optical constants of solids. Academic Press, Waltham, MAGoogle Scholar
  21. 21.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  22. 22.
    Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34:244–246CrossRefGoogle Scholar
  23. 23.
    Kim H, Lee B (2009) Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination. Plasmonics 4:153–159CrossRefGoogle Scholar
  24. 24.
    Najiminaini M, Vasefi F, Kaminska B, Carson JJL (2011) Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer. Opt Express 19:26186–26197CrossRefGoogle Scholar
  25. 25.
    Najiminaini M, Vasefi F, Kaminska B, Carson JJL (2012) Nano-hole array structure with improved surface plasmon energy matching characteristics. Appl Phys Lett 100:043105CrossRefGoogle Scholar
  26. 26.
    Djaker N, Hostein R, Devaux E, Ebbesen TW, Rigneault H, Wenger J (2010) Surface enhanced Raman scattering on a single nanometric aperture. J Phys Chem C 114:16250–16256CrossRefGoogle Scholar
  27. 27.
    Pang Y, Gordon R (2011) Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett 11:3763–3767CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mohamadreza Najiminaini
    • 1
    • 2
  • Fartash Vasefi
    • 1
    • 2
    • 3
  • Bozena Kaminska
    • 1
  • Jeffrey J. L. Carson
    • 2
    • 3
  1. 1.The School of Engineering ScienceSimon Fraser UniversityBurnabyCanada
  2. 2.Imaging Program, Lawson Health Research InstituteLondonCanada
  3. 3.Medical Biophysics, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonCanada

Personalised recommendations