, Volume 7, Issue 4, pp 739–744 | Cite as

Distance Dependence of Metal-Enhanced Fluorescence

  • Anatoliy I. Dragan
  • Eric S. Bishop
  • Jose R. Casas-Finet
  • Robert J. Strouse
  • James McGivney
  • Mark A. Schenerman
  • Chris D. Geddes


In recent years both the mechanism and applications of metal-enhanced fluorescence (MEF) have attracted significant attention, yet many fundamental aspects of MEF remain unanswered or addressed. In this study, we address a fundamental aspect of MEF. Using fluorescein-labeled different length DNA scaffolds, covalently bound to silver nanodeposits, we have experimentally measured the distance dependence of the MEF effect. The enhanced fluorescence signatures, i.e., MEF, follow quite closely the theoretical decay of the near-field of the nanoparticles, calculated using finite difference time domain approaches. This implies that the mechanisms of MEF are partially underpinned by the magnitude and distribution of the electric field around near-field nanoparticles.


Metal-Enhanced fluorescence Surface plasmons Near-field strength Nanoparticles DNA scaffolds Surface-enhanced fluorescence Radiative-decay engineering Plasmon-enhanced fluorescence 



The authors thank MedImmune Inc., for financial support as well as the University of Maryland Baltimore County for salary contributions.


  1. 1.
    Aslan K, Geddes CD (2010) In: Geddes CD (ed) Metal-enhanced fluorescence: progress towards a unified plasmon-fluorophore description. Wiley, Hoboken, NJ, pp 1–24Google Scholar
  2. 2.
    Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12(2):121–129CrossRefGoogle Scholar
  3. 3.
    Geddes CD (2010) Metal-enhanced fluorescence. Wiley, Hoboken, NJCrossRefGoogle Scholar
  4. 4.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New YorkCrossRefGoogle Scholar
  5. 5.
    Zhang Y, Dragan A, Geddes CD (2009) Wavelength dependence of metal-enhanced fluorescence. J Phys Chem C 113(28):12095–12100CrossRefGoogle Scholar
  6. 6.
    Kummerlen J et al (1993) Enhanced dye fluorescence over silver island films: analysis of the distance dependence. Mol Phys 80(5):1031–1046CrossRefGoogle Scholar
  7. 7.
    Ray K, Badugu R, Lakowicz JR (2007) Polyelectrolyte layer-by-layer assembly to control the distance between fluorophores and plasmonic nanostructures. Chem Mater 19(24):5902–5909CrossRefGoogle Scholar
  8. 8.
    Ray K, Badugu R, Lakowicz JR (2007) Sulforhodamine adsorbed Langmuir–Blodgett layers on silver island films: effect of probe distance on the metal-enhanced fluorescence. J Phys Chem C Nanomater Interface 111(19):7091–7097Google Scholar
  9. 9.
    Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70(18):3898–3905CrossRefGoogle Scholar
  10. 10.
    Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96(11):113002CrossRefGoogle Scholar
  11. 11.
    Kuhn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97(1):017402CrossRefGoogle Scholar
  12. 12.
    Aslan K et al (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62CrossRefGoogle Scholar
  13. 13.
    D’Agostino S et al (2009) Enhanced fluorescence by metal nanospheres on metal substrates. Opt Lett 34(15):2381–2383CrossRefGoogle Scholar
  14. 14.
    Dragan AI et al (2010) Metal-enhanced picogreen fluorescence: application for double-stranded DNA quantification. Anal Biochem 396(1):8–12CrossRefGoogle Scholar
  15. 15.
    Mackowski S et al (2008) Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. Nano Lett 8(2):558–564CrossRefGoogle Scholar
  16. 16.
    Matveeva EG et al (2007) Metal particle-enhanced fluorescent immunoassays on metal mirrors. Anal Biochem 363(2):239–245CrossRefGoogle Scholar
  17. 17.
    Pribik R et al (2009) Metal-enhanced fluorescence (MEF): physical characterization of silver-island films and exploring sample geometries. Chem Phys Lett 478(1–3):70–74CrossRefGoogle Scholar
  18. 18.
    Dragan AI et al (2011) Two-color, 30 second microwave-accelerated metal-enhanced fluorescence DNA assays: a new Rapid Catch and Signal (RCS) technology. J Immunol Methods 366(1–2):1–7CrossRefGoogle Scholar
  19. 19.
    Pernice WHP (2010) Finite-difference time-domain methods and material models for the simulation of metallic and plasmonic structures. J Comput Theor Nanosci 7(1):1–14CrossRefGoogle Scholar
  20. 20.
    Stoermer RL, Keating CD (2006) Distance-dependent emission from dye-labeled oligonucleotides on striped Au/Ag nanowires: effect of secondary structure and hybridization efficiency. J Am Chem Soc 128(40):13243–13254CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Anatoliy I. Dragan
    • 1
  • Eric S. Bishop
    • 2
  • Jose R. Casas-Finet
    • 2
  • Robert J. Strouse
    • 2
  • James McGivney
    • 2
  • Mark A. Schenerman
    • 2
  • Chris D. Geddes
    • 1
  1. 1.Institute of Fluorescence and Department of Chemistry and Biochemistry, The Columbus CenterUniversity of Maryland Baltimore CountyBaltimoreUSA
  2. 2.MedImmune LLCGaithersburgUSA

Personalised recommendations