, Volume 7, Issue 4, pp 701–707 | Cite as

Exciting Surface Plasmons with Transformation Media

  • Carlos García-Meca
  • Rubén Ortuño
  • Javier Martí
  • Alejandro Martínez


We present a way of exciting surface plasmon polaritons along non-patterned metallic surfaces by means of a flat squeezing slab designed with transformation optics. The slab changes the dispersion relation of incident light, enabling evanescent coupling to propagating surface plasmons. Unlike prism couplers, the proposed device does not introduce reflections at its input interface. Moreover, its compact geometry is suitable for integration. A feasible dielectric implementation of the coupler is suggested. Finally, we show that the angular response of the device can be engineered by using a non-uniform compression factor. As an example, we design a coupler with a half-power angular bandwidth 2.5 times higher than that of a conventional dielectric coupler.


Surface plasmon polaritons Transformation optics Metamaterials Couplers Broadband 



Financial support by Spanish Ministerio de Ciencia e Innovación (contracts CSD2008-00066 and TEC2008-06871-C02, and FPU grant) is gratefully acknowledged.


  1. 1.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag, BerlinGoogle Scholar
  2. 2.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  3. 3.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New YorkGoogle Scholar
  4. 4.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRefGoogle Scholar
  5. 5.
    Brongersma ML, Shalaev VM (2010) The case for plasmonics. Science 328:440–441CrossRefGoogle Scholar
  6. 6.
    Liu Y, Zentgraf T, Bartal G, Zhang X (2010) Transformational plasmon optics. Nano Lett 10:1991–1997CrossRefGoogle Scholar
  7. 7.
    Huidobro PA, Nesterov ML, Martín-Moreno L, García-Vidal FJ (2010) Transformation optics for plasmonics. Nano Lett 10:1985–1990CrossRefGoogle Scholar
  8. 8.
    Kadic M, Guenneau S, Enoch S (2010) Transformational plasmonics: cloak, concentrator and rotator for SPPs. Opt Express 18:12027–12032CrossRefGoogle Scholar
  9. 9.
    Zhang J, Xiao S, Wubs M, Mortensen NA (2011) Surface plasmon wave adapter designed with transformation optics. ACS Nano 5:4359–4364CrossRefGoogle Scholar
  10. 10.
    Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782CrossRefGoogle Scholar
  11. 11.
    Leonhardt U (2006) Optical conformal mapping. Science 312:1777–1780CrossRefGoogle Scholar
  12. 12.
    Leonhardt U, Philbin TG (2006) General relativity in electrical engineering. New J Phys 8:247CrossRefGoogle Scholar
  13. 13.
    Sambles JR, Bradbery GW, Yang F (1991) Optical excitation of surface plasmons: an introduction. Contemp Phys 32:173–183CrossRefGoogle Scholar
  14. 14.
    Rahm M, Roberts DA, Pendry JB, Smith DR (2008) Transformation-optical design of adaptive beam bends and beam expanders. Opt Express 16:11555–11567CrossRefGoogle Scholar
  15. 15.
    Vasic B, Isic G, Gajic R, Hingerl K (2009) Coordinate transformation based design of confined metamaterial structures. Phys Rev B 79:85103CrossRefGoogle Scholar
  16. 16.
    Tichit P, Burokur SN, Lustrac A (2009) Waveguide taper engineering using coordinate transformation technology. Opt Express 18:767–772CrossRefGoogle Scholar
  17. 17.
    Zang X, Jiang C (2010) Manipulating the field distribution via optical transformation. Opt Express 18:10168–10176CrossRefGoogle Scholar
  18. 18.
    García-Meca C, Tung MM, Galán JV, Ortuño R, Rodríguez-Fortuño FJ, Martí J, Martínez A (2011) Squeezing and expanding light without reflections via transformation optics. Opt Express 19:3562–3575CrossRefGoogle Scholar
  19. 19.
    Li J, Han S, Zhang S, Bartal G, Zhang X (2009) Designing the Fourier space with transformation optics. Opt Lett 34:3128–3130CrossRefGoogle Scholar
  20. 20.
    Li J, Pendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101:203901CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Carlos García-Meca
    • 1
  • Rubén Ortuño
    • 1
  • Javier Martí
    • 1
  • Alejandro Martínez
    • 1
  1. 1.Nanophotonics Technology Center (NTC)Universitat Politecnica de ValenciaValenciaSpain

Personalised recommendations