, Volume 7, Issue 4, pp 695–699 | Cite as

A CMOS Image Sensor Integrated with Plasmonic Colour Filters

  • Q. Chen
  • D. Das
  • D. Chitnis
  • K. Walls
  • T. D. Drysdale
  • S. Collins
  • D. R. S. Cumming


Multi-pixel, 4.5 × 9 μm, plasmonic colour filters, consisting of periodic subwavelength holes in an aluminium film, were directly integrated on the top surface of a complementary metal oxide semiconductor (CMOS) image sensor (CIS) using electron beam lithography and dry etch. The 100 × 100-pixel plasmonic CIS showed full colour sensitivities across the visible range determined by a photocurrent measurement. The filters were fabricated in a simple process utilising a single lithography step. This is to be compared with the traditional multi-step processing when using dye-doped polymers. The intrinsic compatibility of these plasmonic components with a standard CMOS process allows them to be manufactured in a metal layer close to the photodiodes. The incorporation of such plasmonic components may in the future enable the development of advanced CIS with low cost, low cross-talk and increased functionality.


CMOS image sensors Colour filters Surface plasmons Subwavelength structures 



The authors thank James Grant for chip packaging. This work was supported by a UK EPSRC research grant.


  1. 1.
    Catrysse PB, Wandell BA (2005) Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld. Proc SPIE 5678:1CrossRefGoogle Scholar
  2. 2.
    Koo C, Kim H, Paik K, Park D, Lee K, Park Y, Moon C, Lee S, Hwang S, Lee D, Kong J (2007) Improvement of crosstalk on 5M CMOS image sensor with 1.7 × 1.7 μm2 pixels. Proc SPIE 6471:647115CrossRefGoogle Scholar
  3. 3.
    Hsu TH, Fang YK, Lin CY, Chen SF, Lin CS, Yaung DN, Wuu SG, Chien HC, Tseng CH, Lin JS (2004) Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor. IEEE Electron Device Lett 25:22CrossRefGoogle Scholar
  4. 4.
    Kanamori Y, Shimono M, Hane K (2006) Fabrication of transmission colour filters using silicon subwavelength gratings on quartz substrates. IEEE Photon Technol Lett 18:2126–2128CrossRefGoogle Scholar
  5. 5.
    Inaba Y, Kasano M, Tanaka K, Yamaguchi T (2006) Degradation-free MOS image sensor with photonic crystal colour filter. IEEE Electron Device Lett 27:457CrossRefGoogle Scholar
  6. 6.
    Frey L, Parrein P, Raby J, Pellé C, Hérault D, Marty M, Michailos J (2011) Color filters including infrared cut-off integrated on CMOS image sensor. Opt Express 19:13073CrossRefGoogle Scholar
  7. 7.
    Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779–6782CrossRefGoogle Scholar
  8. 8.
    Lee H-S, Yoon Y-T, Lee S-S, Kim S-H, Lee K-D (2007) Colour filter based on a subwavelength patterned metal grating. Opt Express 15:15457–15463CrossRefGoogle Scholar
  9. 9.
    Chen Q, Cumming DRS (2010) High transmission and low colour cross-talk plasmonic colour filters using triangular-lattice hole arrays in aluminium films. Opt Express 18:14056CrossRefGoogle Scholar
  10. 10.
    Xu T, Wu Y, Luo X, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1:59Google Scholar
  11. 11.
    Catrysse PB, Wandell BA (2003) Integrated colour pixels in 0.18 μm complementary metal oxide semiconductor technology. J Opt Soc Am A 20:2293CrossRefGoogle Scholar
  12. 12.
    Catrysse PB (2005) Monolithic integration of electronics and sub-wavelength metal optics in deep submicron CMOS technology. Mater Res Soc Symp Proc 869:53Google Scholar
  13. 13.
    Yoon Y, Lee S, Lee B (2010) Visible filter integrated with an image sensor fabricated by a 90-nm standard CMOS process. LEOS, ThJ2.Google Scholar
  14. 14.
    Tang L, Latif S, Miller DAB (2009) Plasmonic device in silicon CMOS. Electron Lett 45(13)Google Scholar
  15. 15.
    Chen Q, Chitnis D, Walls K, Drysdale TD, Collins S, Cumming DRS (2012) CMOS photo detectors integrated with plasmonic colour filters. IEEE Photonic Technol Lett 24:197CrossRefGoogle Scholar
  16. 16.
    Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46CrossRefGoogle Scholar
  17. 17.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  18. 18.
    Das D, Collins S (2010) A wide dynamic range integrating pixel with an improved low light sensitivity. Proc ISCAS 2010, pp. 4261–4264Google Scholar
  19. 19.
    CIE free documents for download: CIE 1931 standard colorimetric observer data. Accessed 21 March 2012
  20. 20.
    Krishnan A, Thio T, Kim TJ, Lezec HJ, Ebbesen TW, Wolff PA, Pendry J, Martin-Moreno L, Garcia-Vidal FJ (2001) Evanescently coupled resonance in surface plasmon enhanced transmission. Opt Commun 200:1CrossRefGoogle Scholar
  21. 21.
    Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal naonparticles. Appl Phys Lett 86:063106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Q. Chen
    • 1
  • D. Das
    • 2
  • D. Chitnis
    • 2
  • K. Walls
    • 1
  • T. D. Drysdale
    • 1
  • S. Collins
    • 2
  • D. R. S. Cumming
    • 1
  1. 1.School of EngineeringUniversity of GlasgowGlasgowUK
  2. 2.Department of Engineering ScienceUniversity of OxfordOxfordUK

Personalised recommendations