, Volume 7, Issue 4, pp 595–601

Pluronic Triblock Copolymer Encapsulated Gold Nanorods as Biocompatible Localized Plasmon Resonance-Enhanced Scattering Probes for Dark-Field Imaging of Cancer Cells



Gold nanorods (GNR) are synthesized using cetylmethylammonium bromide (CTAB) surfactants which function as structure-directing agents. However, CTAB forms a tightly bound cationic bilayer on GNR surface with the cationic trimethylammonium head group exposed to the aqueous media, which is known to be highly toxic in vitro and in vivo. Pluronic is a non-ionic triblock polymer, which can associate with CTAB and form stable CTAB–polymer complexes due to hydrophobic interactions. In this work, two types of Pluronic triblock copolymers were used to encapsulate GNR to reduce their cytotoxicity and improve colloidal and optical stability for biological applications. These formulations were characterized by UV–vis absorption spectra analysis, transmission electron microscopy, cell viability studies, differential interference contrast microscopy and dark-field imaging.


Gold nanorods Plasmonic resonance Pluronic encapsulation CTAB–polymer complexes Cytotoxicity Colloidal and optical stability 

Supplementary material

11468_2012_9347_MOESM1_ESM.docx (233 kb)
ESM 1DOCX 232 kb


  1. 1.
    Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217CrossRefGoogle Scholar
  2. 2.
    Jing-Liang L, Min G (2010) Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE J Sel Top Quant Electron 16(4):989–996CrossRefGoogle Scholar
  3. 3.
    Kim E, Yang J, Choi J, Suh JS, Huh YM, Haam S (2009) Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents. Nanotechnology 20(36). doi:10.1088/0957-4484/20/36/365602
  4. 4.
    Choi WI, Kim J-Y, Kang C, Byeon CC, Kim YH, Tae G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5(3):1995–2003. doi:10.1021/nn103047r CrossRefGoogle Scholar
  5. 5.
    Wieder ME, Hone DC, Cook MJ, Handsley MM, Gavrilovic J, Russell DA (2006) Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’. Photochem Photobiol Sci 5(8):727–734CrossRefGoogle Scholar
  6. 6.
    Hsieh S, Meltzer S, Wang CRC, Requicha AAG, Thompson ME, Koel BE (2001) Imaging and manipulation of gold nanorods with an atomic force microscope. J Phys Chem B 106(2):231–234. doi:10.1021/jp012747x CrossRefGoogle Scholar
  7. 7.
    David AS (2003) Plasmon resonant particles for biological detection. Curr Opin Biotechnol 14(1):13–22. doi:10.1016/s0958-1669(02)00015-0 CrossRefGoogle Scholar
  8. 8.
    Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317(6):517–523. doi:10.1016/s0009-2614(99)01414-1 CrossRefGoogle Scholar
  9. 9.
    Nikoobakht B, El-Sayed MA (2003) Surface-enhanced Raman scattering studies on aggregated gold nanorods†. J Phys Chem A 107(18):3372–3378. doi:10.1021/jp026770+ CrossRefGoogle Scholar
  10. 10.
    Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11(3):169–183. doi:10.1080/10717540490433895 CrossRefGoogle Scholar
  11. 11.
    Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791CrossRefGoogle Scholar
  12. 12.
    Gou L, Murphy CJ (2005) Fine-tuning the shape of gold nanorods. Chem Mater 17(14):3668–3672. doi:10.1021/cm050525w CrossRefGoogle Scholar
  13. 13.
    Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067. doi:10.1021/jp0107964 CrossRefGoogle Scholar
  14. 14.
    Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35(11):1084–1094CrossRefGoogle Scholar
  15. 15.
    Prescott SW, Mulvaney P (2006) Gold nanorod extinction spectra. J Appl Phys 99(12):123504CrossRefGoogle Scholar
  16. 16.
    Yong K-T, Sahoo Y, Swihart M, Schneeberger P, Prasad P (2008) Templated synthesis of gold nanorods (NRs): the effects of cosurfactants and electrolytes on the shape and optical properties. Top Catal 47(1):49–60. doi:10.1007/s11244-007-9030-7 CrossRefGoogle Scholar
  17. 17.
    Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123–126:471–485. doi:10.1016/j.cis.2006.05.026 CrossRefGoogle Scholar
  18. 18.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668. doi:10.1021/nl052396o CrossRefGoogle Scholar
  19. 19.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41(12):1721–1730. doi:10.1021/ar800035u CrossRefGoogle Scholar
  20. 20.
    Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708. doi:10.1002/smll.200801546 CrossRefGoogle Scholar
  21. 21.
    Sanda CBS, Astilean (2010) Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags. Nanotechnology 21(235601):8. doi:10.1088/0957-4484/21/23/235601 Google Scholar
  22. 22.
    Takahashi H, Niidome T, Kawano T, Yamada S, Niidome Y (2008) Surface modification of gold nanorods using layer-by-layer technique for cellular uptake. J Nanopart Res 10(1):221–228. doi:10.1007/s11051-007-9227-5 CrossRefGoogle Scholar
  23. 23.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962. doi:10.1021/cm020732l CrossRefGoogle Scholar
  24. 24.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  25. 25.
    Murphy CJ, Thompson LB, Chernak DJ, Yang JA, Sivapalan ST, Boulos SP, Huang J, Alkilany AM, Sisco PN (2011) Gold nanorod crystal growth: from seed-mediated synthesis to nanoscale sculpting. Curr Opin Colloid Interface Sci 16(2):128–134. doi:10.1016/j.cocis.2011.01.001 CrossRefGoogle Scholar
  26. 26.
    Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901. doi:10.1016/j.ccr.2005.01.030 CrossRefGoogle Scholar
  27. 27.
    Iqbal M, Chung Y-I, Tae G (2007) An enhanced synthesis of gold nanorods by the addition of Pluronic (F-127) via a seed mediated growth process. J Mater Chem 17(4):335–342CrossRefGoogle Scholar
  28. 28.
    Sarwat FKS, Bhatia R, Susan CR (2005) Pluronic F127 as a cell encapsulation material: utilization of membrane-stabilizing agents. Tissue Eng 11(5–6):974–983. doi:10.1089/ten.2005.11.974 Google Scholar
  29. 29.
    Sakai T, Alexandridis P (2006) Ag and Au monometallic and bimetallic colloids: morphogenesis in amphiphilic block copolymer solutions. Chem Mater 18(10):2577–2583. doi:10.1021/cm051757y CrossRefGoogle Scholar
  30. 30.
    Sakai T, Alexandridis P (2004) Single-step synthesis and stabilization of metal nanoparticles in aqueous Pluronic block copolymer solutions at ambient temperature. Langmuir 20(20):8426–8430. doi:10.1021/la049514s CrossRefGoogle Scholar
  31. 31.
    Wang SH, Lee CW, Chiou A, Wei PK (2010) Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnology 8:33. doi:10.1186/1477-3155-8-33 CrossRefGoogle Scholar
  32. 32.
    Hawley AE, Illum L, Davis SS (1997) Lymph node localisation of biodegradable nanospheres surface modified with poloxamer and poloxamine block co-polymers. FEBS Lett 400(3):319–323. doi:10.1016/s0014-5793(96)01408-1 CrossRefGoogle Scholar
  33. 33.
    Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA (2006) In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release 112(1):26–34. doi:10.1016/j.jconrel.2006.01.006 CrossRefGoogle Scholar
  34. 34.
    Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3(4):485–491. doi:10.1021/nl0340475 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Bio-Optical Imaging Group, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR)SingaporeSingapore
  2. 2.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Bio-photonics group, School of PhysicsNational University of IrelandGalwayIreland

Personalised recommendations