Advertisement

Plasmonics

, Volume 7, Issue 3, pp 563–569 | Cite as

Light Manipulation by Gold Nanobumps

  • Chia Min Chang
  • Cheng Hung Chu
  • Ming Lun Tseng
  • Yao-Wei Huang
  • Hsin Wei Huang
  • Bo Han Chen
  • Ding-Wei Huang
  • Din Ping Tsai
Article

Abstract

Backward and forward scattering of surface plasmonic wave interactions from gold nanobumps on the surface of a 30-nm gold thin film demonstrate three-dimensional (3-D) focusing and diverging properties. Fan-shaped forward scattering of an individual nanobump is observed. A quarter-circle structure composed of nanobumps is exploited to manipulate scattering from each nanobump. Experimental results show that 3-D propagation vectors generated by the gold nanobumps with their heights of 16 nm can deflect the surface plasmonic waves to produce 3-D focusing at 3.6 μm above the surface of the gold film. We clearly demonstrate that 3-D forward and backward focusing from gold nanobumps are with different amplitudes and directions of the vertical propagation vectors.

Keywords

Surface plasmons Nanostructures Optics at surfaces Scattering light Focusing 

Notes

Acknowledgments

The authors thank the National Science Council, Taiwan, for the financial support of this project under grant numbers 99-2911-I-002-127, 99-2120-M-002-012, 100-2923-M-002-007-MY3, and 100-2120-M-002-008. They also thank the Molecular Imaging Center of the National Taiwan University for technical support.

References

  1. 1.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511CrossRefGoogle Scholar
  2. 2.
    Nomura W, Yatsui T, Ohtsu M (2006) Efficient optical near-field energy transfer along an Au nanodot coupler with size-dependent resonance. Appl Phys B 84:257–259CrossRefGoogle Scholar
  3. 3.
    Radko IP, Bozhevolnyi SI, Evlyukhin AB, Boltasseva A (2007) Surface plasmon polariton beam focusing with parabolic nanoparticle chains. Opt Express 15:6576–6582CrossRefGoogle Scholar
  4. 4.
    Evlyukhin AB, Bozhevolnyi SI, Stepanov AL, Kiyan R, Reinhardt C, Passinger S, Chichkov BN (2007) Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles. Opt Express 15:16667–16680CrossRefGoogle Scholar
  5. 5.
    Kiyan R, Reinhardt C, Passinger S, Stepanov AL, Hohenau A, Krenn JR, Chichkov BN (2007) Rapid prototyping of optical components for surface plasmon polaritons. Opt Express 15:4205–4215CrossRefGoogle Scholar
  6. 6.
    Radko IP, Bozhevolnyi SI, Brucoli G, Martin-Moreno L, Garcia-Vidal FJ, Boltasseva A (2009) Efficient unidirectional ridge excitation of surface plasmons. Opt Express 17:7228–7232CrossRefGoogle Scholar
  7. 7.
    Zhang DG, Yuan XC, Bu J, Yuan GH, Wang Q, Lin J, Zhang XJ, Wang P, Ming H, Mei T (2009) Surface plasmon converging and diverging properties modulated by polymer refractive structures on metal films. Opt Express 17:11315–11320CrossRefGoogle Scholar
  8. 8.
    Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002) Two-dimensional optics with surface plasmon polaritons. Appl Phys Lett 81:1762–1764CrossRefGoogle Scholar
  9. 9.
    Drezet A, Hohenau A, Stepanov AL, Ditlbacher H, Steinberger B, Aussenegg FR, Leitner A, Krenn JR (2006) Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes. Plasmonics 1:141–145CrossRefGoogle Scholar
  10. 10.
    Yin LL, Vlasko-Vlasov VK, Pearson J, Hiller JM, Hua J, Welp U, Brown DE, Kimball CW (2005) Subwavelength focusing and guiding of surface plasmons. Nano Lett 5:1399–1402CrossRefGoogle Scholar
  11. 11.
    Nomura W, Ohtsu M, Yatsui T (2005) Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion. Appl Phys Lett 86:181108CrossRefGoogle Scholar
  12. 12.
    Drezet A, Stepanov AL, Ditlbacher H, Hohenau A, Steinberger B, Aussenegg FR, Leitner A, Krenn JR (2005) Surface plasmon propagation in an elliptical corral. Appl Phys Lett 86:3Google Scholar
  13. 13.
    Sterligov VA, Kretschmann M (2005) Scattering of surface electromagnetic waves by Sn nanoparticles. Opt Express 13:4134–4140CrossRefGoogle Scholar
  14. 14.
    Kim H, Hahn J, Lee B (2008) Focusing properties of surface plasmon polariton floating dielectric lenses. Opt Express 16:3049–3057CrossRefGoogle Scholar
  15. 15.
    Wang Q, Yuan XC, Tan PS, Zhang DG (2008) Phase modulation of surface plasmon polaritons by surface relief dielectric structures. Opt Express 16:19271–19276CrossRefGoogle Scholar
  16. 16.
    Fang ZY, Qi H, Wang C, Zhu X (2010) Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing. Plasmonics 5:207–212CrossRefGoogle Scholar
  17. 17.
    Teperik TV, Archambault A, Marquier F, Greffet JJ (2009) Huygens-Fresnel principle for surface plasmons. Opt Express 17:17483–17490CrossRefGoogle Scholar
  18. 18.
    Lin WC, Liao LS, Chen H, Chang HC, Tsai DP, Chiang HP (2011) Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics 6:201–206CrossRefGoogle Scholar
  19. 19.
    Felidj N, Laurent G, Grand J, Aubard J, Levi G, Hohenau A, Aussenegg FR, Krenn JR (2006) Far-field Raman imaging of short-wavelength particle plasmons on gold nanorods. Plasmonics 1:35–39CrossRefGoogle Scholar
  20. 20.
    Chen MW, Chau YF, Tsai DP (2008) Three-dimensional analysis of scattering field interactions and surface plasmon resonance in coupled silver nanospheres. Plasmonics 3:157–164CrossRefGoogle Scholar
  21. 21.
    Chung HY, Leung PT, Tsai DP (2010) Enhanced intermolecular energy transfer in the vicinity of a plasmonic nanorice. Plasmonics 5:363–368CrossRefGoogle Scholar
  22. 22.
    Yi M, Zhang D, Wen X, Fu Q, Wang P, Lu Y, Ming H (2011) Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film. Plasmonics 6(2):213–217CrossRefGoogle Scholar
  23. 23.
    Chau Y-F, Jiang Z-H (2011) Plasmonics effects of nanometal embedded in a dielectric substrate. Plasmonics 6(3):581–589CrossRefGoogle Scholar
  24. 24.
    Chau Y-F, Chen MW, Yeh H-H, Wu F-L, Li H-Y, Tsai DP (2011) Highly enhanced surface plasmon resonance in a coupled silver nanodumbbell. Appl Phys A 104(3):801–805CrossRefGoogle Scholar
  25. 25.
    Peng TC, Lin WC, Chen CW, Tsai DP, Chiang HP (2011) Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles. Plasmonics 6:29–34CrossRefGoogle Scholar
  26. 26.
    Sanchez-Gil JA, Maradudin AA (1999) Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects. Phys Rev B 60:8359–8367CrossRefGoogle Scholar
  27. 27.
    Shchegrov AV, Novikov IV, Maradudin AA (1997) Scattering of surface plasmon polaritons by a circularly symmetric surface defect. Phys Rev Lett 78:4269–4272CrossRefGoogle Scholar
  28. 28.
    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314CrossRefGoogle Scholar
  29. 29.
    Kawazoe T, Yatsui T, Ohtsu M (2006) Nanophotonics using optical near fields. J Non-Cryst Solids 352:2492–2495CrossRefGoogle Scholar
  30. 30.
    Chu CH, Chiun CD, Cheng HW, Tseng ML, Chiang HP, Mansuripur M, Tsai DP (2010) Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography. Opt Express 18:18383–18393CrossRefGoogle Scholar
  31. 31.
    Chang CM, Chu CH, Tseng ML, Chiang HP, Mansuripur M, Tsai DP (2011) Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films. Opt Express 19:9492–9504CrossRefGoogle Scholar
  32. 32.
    Chu CH, Tseng ML, Shiue CD, Chen SW, Chiang HP, Mansuripur M, Tsai DP (2011) Fabrication of phase-change Ge2Sb2Te5 nano-rings. Opt Express 19:12652–12657CrossRefGoogle Scholar
  33. 33.
    Huang HJ, Yu CP, Chang HC, Chiu KP, Chen HM, Liu RS, Tsai DP (2007) Plasmonic optical properties of a single gold nano-rod. Opt Express 15(12):7132–7139CrossRefGoogle Scholar
  34. 34.
    Chiu KP, Tsai DP (2005) Near-field interactions between light and surface plasmons of a metal slab. J Korean Phys Soc 47:S119–S122Google Scholar
  35. 35.
    Samson Z, Yen SC, Macdonald KF, Knight K, Li S, Hewak DW, Tsai DP, Zheludev NI (2010) Chalcogenide glasses in active plasmonics. Phys Status Solidi RRL 4:274CrossRefGoogle Scholar
  36. 36.
    Chen WT, Wu PC, Chen CJ, Chung HY, Chau YF, Kuan CH, Tsai DP (2010) Electromagnetic energy vortex associated with sub-wavelength plasmonic Taiji marks. Opt Express 18:19665–19671CrossRefGoogle Scholar
  37. 37.
    Chen WT, Chen CJ, Wu PC, Sun S, Zhou L, Guo GY, Hsiao CT, Yang KY, Zheludev NI, Tsai DP (2011) Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. Opt Express 19:12837–12842CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Chia Min Chang
    • 1
    • 2
  • Cheng Hung Chu
    • 2
  • Ming Lun Tseng
    • 3
  • Yao-Wei Huang
    • 3
  • Hsin Wei Huang
    • 2
  • Bo Han Chen
    • 2
  • Ding-Wei Huang
    • 1
  • Din Ping Tsai
    • 2
    • 3
    • 4
    • 5
  1. 1.Graduate Institute of Photonics and OptoelectronicsNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  3. 3.Graduate Institute of Applied PhysicsNational Taiwan UniversityTaipeiTaiwan
  4. 4.Research Center for Applied SciencesAcademia SinicaTaipeiTaiwan
  5. 5.Instrument Technology Research CenterNational Applied Research LaboratoriesHsinchuTaiwan

Personalised recommendations