, Volume 7, Issue 3, pp 535–542 | Cite as

Near-Field Induced Reversible Structuring of Photosensitive Polymer Films: Gold Versus Silver Nano-antennas

  • Tobias König
  • Nataraja Sekhar Yadavalli
  • Svetlana SanterEmail author


We report on reversible structuring of photosensitive azo-containing polymer films induced by near-field intensity patterns emanating from illuminated nano-scale metal structures fabricated by colloidal lithography. Two different sets of these nano-antennas, consisting of either gold or silver, were investigated with respect to their ability to induce topography changes in a photosensitive polymer film placed above. Using in situ recorded atomic force microscopy micrographs of polymer topography changes during UV irradiation, we find that the response of the polymer film differs for the two metals at similar geometries of the metal nanostructures. The maximum topography change is stronger for Ag antennas as compared to the Au pattern, whereas the latter material revealed a pronounced splitting of topography maxima into two, a phenomenon less visible in the case of Ag. Finite difference time domain simulations of the electromagnetic field distribution in the vicinity of the metal structures confirm this remarkable observation. The local intensity is twice as large for the Ag as compared to the Au structures, and in each case, a splitting of the intensity pattern results, with a stronger modulation for Au. For both metals, the topography change was found to be reversible between a patterned and a flat by repeated change of irradiation conditions.


Photosensitive polymer films Surface plasmons 



This research is supported by the DFG (SA1657/4-1). We thank Dr. J. Stumpe and Dr. L. M. Goldenberg from the Fraunhofer Institute for Applied Polymer Research, Golm, Germany for providing the photosensitive polymer.

Supplementary material

11468_2012_9339_MOESM1_ESM.pdf (127 kb)
ESM 1 (PDF 126 kb)


  1. 1.
    Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) “Dip-pen” nanolithography. Science 283:661–663CrossRefGoogle Scholar
  2. 2.
    Wilbur JL, Kumar A, Biebuyck HA, Kim E, Whitesides GM (1996) Microcontact printing of self-assembled monolayers: applications in microfabrication. Nanotechnology 7:452–457CrossRefGoogle Scholar
  3. 3.
    Alkaisi MM, Blaikie RJ, McNab SJ, Cheung R, Cumming DRS (1999) Sub-diffraction-limited patterning using evanescent near-field optical lithography. Appl Phys Lett 75:3560–3562CrossRefGoogle Scholar
  4. 4.
    Kunz RR, Rothschild M, Yeung MS (2003) Large-area patterning of ∼50 nm structures on flexible substrates using near-field 193 nm radiation. J Vac Sci Technol B 21:78–81CrossRefGoogle Scholar
  5. 5.
    Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4:1085–1089CrossRefGoogle Scholar
  6. 6.
    Srituravanich W, Fang N, Durant S, Ambati M, Sun C, Zhang X (2004) Sub-100 nm lithography using ultrashort wavelength of surface plasmons. J Vac Sci Technol B 22:3475–3479CrossRefGoogle Scholar
  7. 7.
    Shao DB, Chen SC (2005) Surface-plasmon-assisted nanoscale photolithography by polarized light. Appl Phys Lett 86:253107–253110CrossRefGoogle Scholar
  8. 8.
    Guo X, Du J, Guo Y, Yao J (2006) Large-area surface-plasmon polariton interference lithography. Opt Lett 31:2613–2615CrossRefGoogle Scholar
  9. 9.
    Shao DB, Chen SC (2006) Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography. Nano Lett 6:2279–2283CrossRefGoogle Scholar
  10. 10.
    Derouard M, Hazart J, Lérondel G, Bachelot R, Adam P-M, Royer P (2007) Polarization-sensitive printing of surface plasmon interferences. Opt Express 15:4238–4246CrossRefGoogle Scholar
  11. 11.
    Liu ZW, Wie QH, Zhang X (2005) Surface plasmon interference nanolithography. Nano Lett 5:957–961CrossRefGoogle Scholar
  12. 12.
    Hubert C, Rumyantseva A, Lerondel G, Grand J, Kostcheev S, Billot L, Vial A, Bachelot R, Royer P, Chang SH, Gray SK, Wiederrecht GP, Schatz GC (2005) Near-field photochemical imaging of noble metal nanostructures. Nano Lett 5:615–619CrossRefGoogle Scholar
  13. 13.
    König T, Goldenberg LM, Kulikovska O, Kulikovsky L, Stumpe J, Santer S (2011) Reversible structuring of photosensitive polymer films by surface plasmon near field radiation. Soft Matter 7:4174–4178CrossRefGoogle Scholar
  14. 14.
    Rau H, Shen YQ (1988) Photoisomerization of sterically hindered azobenzenes. J Photochem Photobiol A Chem 42:321–327CrossRefGoogle Scholar
  15. 15.
    Loucifsaibi R, Nakatani K, Delaire JA, Dumont M, Sekkat Z (1993) Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films. Chem Mater 5:229–236CrossRefGoogle Scholar
  16. 16.
    Todorov T, Nikolova L, Tomova N (1984) Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence. Appl Opt 23:4588–4591CrossRefGoogle Scholar
  17. 17.
    Jones C, Day S (1991) Shedding light on alignment. Nature 351:15CrossRefGoogle Scholar
  18. 18.
    Sekkat Z, Kleideiter G, Knoll W (2001) Optical orientation of azo dye in polymer films at high pressure. J Opt Soc Am B Opt Phys 18:1854–1857CrossRefGoogle Scholar
  19. 19.
    Rochon P, Batalla E, Natansohn A (1995) Optically induced surface gratings on azoaromatic polymer films. Appl Phys Lett 66:136–138CrossRefGoogle Scholar
  20. 20.
    Kim DY, Tripathy SK, Li L, Kumar J (1995) Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl Phys Lett 66:1166–1168CrossRefGoogle Scholar
  21. 21.
    Barrett CJ, Natansohn AL, Rochon PL (1996) Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films. J Phys Chem 100:8836–8842CrossRefGoogle Scholar
  22. 22.
    Kim DY, Li L, Jiang XL, Shivshankar V, Kumar J, Tripathy SK (1995) Polarized laser induced holographic surface relief gratings on polymer films. Macromolecules 28:8835–8839CrossRefGoogle Scholar
  23. 23.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts Mod Phys 111:1–133CrossRefGoogle Scholar
  24. 24.
    Kulikovska O, Goldenberg LM, Stumpe J (2007) Supramolecular azobenzene-based materials for optical generation of microstructures. Chem Mater 19:3343–3348CrossRefGoogle Scholar
  25. 25.
    Kulikovska O, Kulikovsky L, Goldenberg L, Stumpe J (2008) Generation of microstructures in novel supramolecular ionic materials based on azobenzene. Proc SPIE 6999:69990I-18Google Scholar
  26. 26.
    Haynes WM (2000) CRC handbook of chemistry and physics, 81st edn. CRC, Boca RatonGoogle Scholar
  27. 27.
    Homola J (2006) Springer series on chemical sensors and biosensors 4. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tobias König
    • 1
  • Nataraja Sekhar Yadavalli
    • 1
  • Svetlana Santer
    • 1
    Email author
  1. 1.Department of Experimental Physics, Institute for Physics and AstronomyUniversity of PotsdamPotsdamGermany

Personalised recommendations