Plasmonics

, Volume 7, Issue 3, pp 525–534 | Cite as

Plasmonic Scattering by Metal Nanoparticles for Solar Cells

  • Alessio Paris
  • Alessandro Vaccari
  • Antonino Calà Lesina
  • Enrico Serra
  • Lucia Calliari
Article

Abstract

We investigate on absorption and scattering from metal nanoparticles in view of possible applications to photovoltaic cells. The analysis, accounting for most of the parameters involved in the physical mechanism of scattering, is split into two parts. In the first part, scattering from a metallic sphere is treated analytically to investigate the dependence on sphere size, sphere metal, and surrounding medium. In the second part, scattering from a metallic particle is investigated as a function of particle shape (spheroids, hemispheres, and cylinders) via numerical simulations based on the finite-difference time-domain method. The aim of the work is to provide a systematic study on scattering and absorption by metal nanoparticles, exploring several combinations of material and geometrical parameters in order to identify those combinations that could play a key role in solar cell efficiency improvement.

Keywords

Plasmonics Scattering Nanoparticles Solar cells FDTD 

Notes

Acknowledgements

This work is supported by the Fondazione Caritro through the project Mistico. In particular, A. P. recognizes that he is funded by the Fondazione Caritro under the same project.

References

  1. 1.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  2. 2.
    Kelly KL, Coronado E, Zhao LL, Schatz G (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  3. 3.
    Pelton M, Aizpurua J, Bryant G (2008) Metal-nanoparticle plasmonics. Laser Photonics Rev 2(3):136–159.CrossRefGoogle Scholar
  4. 4.
    Knight M, Wu Y, Lassiter JB, Nordlander P, Halas NJ (2009) Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett 9(5):2188–2192CrossRefGoogle Scholar
  5. 5.
    Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106CrossRefGoogle Scholar
  6. 6.
    Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105CrossRefGoogle Scholar
  7. 7.
    Temple TL, Mahanama GDK, Reehal HS, Bagnall DM (2009) Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol Energy Mater Sol Cells 93:1978–1985CrossRefGoogle Scholar
  8. 8.
    Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486CrossRefGoogle Scholar
  9. 9.
    Pillai S, Beck FJ, Catchpole KR, Ouyang Z, Green MA (2011) The effect of dielectric spacer thickness on surface plasmon enhanced solar cells front and rear side deposition. J Appl Phys 109:073105CrossRefGoogle Scholar
  10. 10.
    Diukman I, Orenstein M (2011) How front side plasmonic nanostructures enhance solar cell efficiency. Sol Energy Mater Sol Cells 95:2628–2631CrossRefGoogle Scholar
  11. 11.
    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New YorkCrossRefGoogle Scholar
  12. 12.
    Cole JR, Halas NJ (2006) Optimized plasmonic nanoparticle distributions for solar spectrum harvesting. Appl Phys Lett 89:153120CrossRefGoogle Scholar
  13. 13.
    Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113CrossRefGoogle Scholar
  14. 14.
    Reference Solar Spectral Irradiance: Air Mass 1.5, http://rredc.nrel.gov/solar/spectra/am1.5/
  15. 15.
    Palik ED (1985) Handbook of optical constants of solids. Academic Press, BostonGoogle Scholar
  16. 16.
    Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14:302–307CrossRefGoogle Scholar
  17. 17.
    Taflove A, Hagness S (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, Boston, MAGoogle Scholar
  18. 18.
    Roden JA, Gedney SD (2000) Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media. Microw Opt Technol Lett 27(5):334–339CrossRefGoogle Scholar
  19. 19.
    Pontalti R, Cristoforetti L, Cescatti L (1993) The frequency dependent FD-TD method for multi-frequency results in microwave hyperthermia treatment simulation. Phys Med Biol 38:1283–1298CrossRefGoogle Scholar
  20. 20.
    Vaccari A, Pontalti R, Malacarne C, Cristoforetti L (2003) Arobust and efficient subgridding algorithm for finite-difference time-domain simulations of Maxwell’s equations. J Comput Phys 194:117–139CrossRefGoogle Scholar
  21. 21.
    Lubbers RJ, Hunsberger F, Kunz KS (1991) A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma. IEEE Trans Antennas Propag 39:1CrossRefGoogle Scholar
  22. 22.
    Vial A, Laroche T (2008) Comparison of gold and silver dispersion laws suitable for FDTD simulations. Appl Phys B Lasers Opt 93:139–143CrossRefGoogle Scholar
  23. 23.
    Jackson JD (1999) Classical electrodynamics. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alessio Paris
    • 1
  • Alessandro Vaccari
    • 2
  • Antonino Calà Lesina
    • 2
  • Enrico Serra
    • 1
  • Lucia Calliari
    • 1
  1. 1.Interdisciplinary Laboratory for Computational Science (LISC)FBK-CMMTrentoItaly
  2. 2.Renewable Energies and Environmental Technologies (REET)FBK-CMMTrentoItaly

Personalised recommendations