, Volume 7, Issue 2, pp 359–367 | Cite as

Near-Field Optical Analysis of Plasmonic Nano-Probes for Top-Illumination Tip-Enhanced Raman Scattering

  • Neha Mishra
  • G. V. Pavan KumarEmail author


Top-illumination tip-enhanced Raman scattering (TI-TERS) has recently emerged as a promising near-field vibrational spectroscopy method that can be adapted on an upright optical microscope. With a relatively simplified optics, TI-TERS can probe both opaque and transparent samples making them a promising tool in nanoscale chemical analysis. One of the critical components of TI-TERS is the plasmonic nano-tip used to enhance the Raman spectroscopic signature. Herein, we numerically studied the near-field optical properties of conventional gold tip (20 nm radius of curvature) and two varieties of optical antenna-based tips in the context of TI-TERS. Optical antenna-based tips included a 40-nm gold nanoparticle attached to a dielectric tip and a 50-nm equilateral gold nanotriangle attached to a dielectric tip. We evaluated the Raman enhancement spectra as a function of experimental variables such as underlying substrate and angle of the tip with respect to substrate normal. Our analysis revealed that conventional gold tip facilitates superior enhancement and optical antenna-based tips facilitate superior spectral bandwidth and lateral resolution in TI-TERS configuration. Tips with higher enhancement can be harnessed for ultra-sensitive measurements, and tips with broader spectral bandwidth can be utilized to enhance both Stokes and anti-Stokes component of the Raman spectra.


SERS TERS SNOM Optical antenna Near-field 



The authors thank IISER-P for computational facility. PK thanks Department of Science and Technology (DST), India for Ramanujan fellowship. DST nanoscience unit grant (SR/NM/NS-42/2009) is acknowledged.


  1. 1.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783–826CrossRefGoogle Scholar
  2. 2.
    Kawata S, Shalaev VM (eds) (2007) Tip enhancement. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Yeo BS, Stadler J, Schmid T, Zenobi R, Zhang W (2009) Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem Phys Lett 472(1–3):1–13CrossRefGoogle Scholar
  4. 4.
    Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37(5):921–930CrossRefGoogle Scholar
  5. 5.
    Stadler J, Schmid T, Zenobi R (2010) Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. Nano Lett 10(11):4514–4520CrossRefGoogle Scholar
  6. 6.
    Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318(1–3):131–136CrossRefGoogle Scholar
  7. 7.
    Anderson MS (2000) Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett 76(21):3130–3132CrossRefGoogle Scholar
  8. 8.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Metallized tip amplification of near-field Raman scattering. Opt Commun 183(1):333–336CrossRefGoogle Scholar
  9. 9.
    Pettinger B, Picardi G, Schuster R, Ertl G (2000) Surface enhanced Raman spectroscopy: towards single molecule spectroscopy. Electrochemistry 68(12):942–949Google Scholar
  10. 10.
    Rao S, Huttunen MJ, Kontio JM, Makitalo J, Viljanen MR, Simonen J, Kauranen M, Petrov D (2010) Tip-enhanced Raman scattering from bridged nanocones. Opt Express 18(23):23790–23795CrossRefGoogle Scholar
  11. 11.
    Cui X, Zhang W, Yeo BS, Zenobi R, Hafner C, Erni D (2007) Tuning the resonance frequency of Ag-coated dielectric tips. Opt Express 15(13):8309–8316CrossRefGoogle Scholar
  12. 12.
    Liao PF, Wokaun A (1982) Lightning rod effect in surface enhanced Raman scattering. J Chem Phys 76(1):751–752CrossRefGoogle Scholar
  13. 13.
    Steidtner J, Pettinger B (2008) Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys Rev Lett 100(23):2361011–2361014CrossRefGoogle Scholar
  14. 14.
    Zhang W, Yeo BS, Schmid T, Zenobi R (2007) Single molecule tip-enhanced Raman spectroscopy with silver tips. J Phys Chem C 111(4):1733–1738CrossRefGoogle Scholar
  15. 15.
    Bailo E, Deckert V (2008) Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew Chem Int Ed 47(9):1658–1661CrossRefGoogle Scholar
  16. 16.
    Deckert-Gaudig T, Bailo E, Deckert V (2008) Tip-enhanced Raman spectroscopy for bioanalysis. Biophotonics Int 15(4):33–34Google Scholar
  17. 17.
    Bahme R, Cialla D, Richter M, Rasch P, Popp J, Deckert V (2010) Biochemical imaging below the diffraction limit—probing cellular membrane related structures by tip-enhanced Raman spectroscopy (TERS). J Biophotonics 3(7):455–461CrossRefGoogle Scholar
  18. 18.
    Budich C, Neugebauer U, Popp J, Deckert V (2008) Cell wall investigations utilizing tip-enhanced Raman scattering. J Microsc-Oxford 229(3):533–539CrossRefGoogle Scholar
  19. 19.
    Cialla D, Deckert-Gaudig T, Budich C, Laue M, Möller R, Naumann D, Deckert V, Popp J (2009) Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. J Raman Spectrosc 40(3):240–243CrossRefGoogle Scholar
  20. 20.
    Rasmussen A, Deckert V (2006) Surface- and tip-enhanced Raman scattering of DNA components. J Raman Spectrosc 37(1–3):311–317CrossRefGoogle Scholar
  21. 21.
    Cancado LG, Hartschuh A, Novotny L (2009) Tip-enhanced Raman spectroscopy of carbon nanotubes. J Raman Spectrosc 40(10):1420–1426CrossRefGoogle Scholar
  22. 22.
    Picardi G, Chaigneau M, Ossikovski R (2009) High resolution probing of multi wall carbon nanotubes by Tip Enhanced Raman Spectroscopy in gap-mode. Chem Phys Lett 469(1–3):161–165CrossRefGoogle Scholar
  23. 23.
    Yano TA, Verma P, Saito Y, Ichimura T, Kawata S (2009) Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres. Nat Photonics 3(8):473–477CrossRefGoogle Scholar
  24. 24.
    Andrew Chan KL, Kazarian SG (2010) Finding a needle in a chemical haystack: tip-enhanced Raman scattering for studying carbon nanotubes mixtures. Nanotechnology 21(44):445704CrossRefGoogle Scholar
  25. 25.
    Yeo BS, Amstad E, Schmid T, Stadler J, Zenobi R (2009) Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small 5(8):952–960CrossRefGoogle Scholar
  26. 26.
    Hayazawa N, Motohashi M, Saito Y, Ishitobi H, Ono A, Ichimura T, Verma P, Kawata S (2007) Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy. J Raman Spectrosc 38(6):684–696CrossRefGoogle Scholar
  27. 27.
    Nguyen Q, Ossikovski R, Schreiber J (2007) Contrast enhancement on crystalline silicon in polarized reflection mode tip-enhanced Raman spectroscopy. Opt Commun 274(1):231–235CrossRefGoogle Scholar
  28. 28.
    Berweger S, Neacsu CC, Mao Y, Zhou H, Wong SS, Raschke MB (2009) Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat Nanotechnol 4(8):496–499CrossRefGoogle Scholar
  29. 29.
    Wang X, Liu Z, Zhuang MD, Zhang HM, Xie ZX, Wu DY, Ren B, Tian ZQ (2007) Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Appl Phys Lett 91(10):101105CrossRefGoogle Scholar
  30. 30.
    Liu Z, Wang X, Dai K, Jin S, Zeng ZC, Zhuang MD, Yang ZL, Wu DY, Ren B, Tian ZQ (2009) Tip-enhanced Raman spectroscopy for investigating adsorbed nonresonant molecules on single-crystal surfaces: tip regeneration, probe molecule, and enhancement effect. J Raman Spectrosc 40(10):1400–1406CrossRefGoogle Scholar
  31. 31.
    Jiang Y, Wang A, Ren B, Tian ZQ (2008) Cantilever tip near-field surface-enhanced raman imaging of tris(bipyridine)ruthenium(II) on silver nanoparticles-coated substrates. Langmuir 24(20):12054–12061CrossRefGoogle Scholar
  32. 32.
    Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Application of tip-enhanced microscopy for nonlinear Raman spectroscopy. Appl Phys Lett 84(10):1768–1770CrossRefGoogle Scholar
  33. 33.
    Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys Rev Lett 92(22):220801CrossRefGoogle Scholar
  34. 34.
    Olk P, Renger J, Hartling T, Wenzel MT, Eng LM (2007) Two particle enhanced nano Raman microscopy and spectroscopy. Nano Lett 7(6):1736–1740CrossRefGoogle Scholar
  35. 35.
    Bharadwaj P, Beams R, Novotny L (2011) Nanoscale spectroscopy with optical antennas. Chem Sci 2(1):136–140CrossRefGoogle Scholar
  36. 36.
    Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photon 1(3):438–483CrossRefGoogle Scholar
  37. 37.
    Hoppener C, Novotny L (2008) Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. Nano Lett 8(2):642–646CrossRefGoogle Scholar
  38. 38.
    Hoppener C, Novotny L (2008) Imaging of membrane proteins using antenna-based optical microscopy. Nanotechnology 19(38):384012CrossRefGoogle Scholar
  39. 39.
    Zeisel D, Deckert V, Zenobi R, Vo-Dinh T (1998) Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chem Phys Lett 283(5–6):381–385CrossRefGoogle Scholar
  40. 40.
    Mehtani D, Lee N, Hartschuh RD, Kisliuk A, Foster MD, Sokolov AP, Maguire JF (2005) Nano-Raman spectroscopy with side-illumination optics. J Raman Spectrosc 36(11):1068–1075CrossRefGoogle Scholar
  41. 41.
    Stanciu C, Sackrow M, Meixner AJ (2008) High NA particle- and tip-enhanced nanoscale Raman spectroscopy with a parabolic-mirror microscope. J Microsc 229(2):247–253CrossRefGoogle Scholar
  42. 42.
    Schultz ZD, Stranick SJ, Levin IW (2008) Tip-enhanced Raman spectroscopy and imaging: an apical illumination geometry. Appl Spectrosc 62(11):1173–1179CrossRefGoogle Scholar
  43. 43.
    Chan KLA, Kazarian SG (2011) Tip-enhanced Raman mapping with top-illumination AFM. Nanotechnology 22(17):175701CrossRefGoogle Scholar
  44. 44.
    Novotny L, Stranick SJ (2006) Near-field optical microscopy and spectroscopy with pointed probes. Annu Rev Phys Chem 57:303–331CrossRefGoogle Scholar
  45. 45.
    Suh YD, Zenobi R (2000) Improved probes for scanning near-field optical microscopy. Adv Mater 12(15):1139–1142CrossRefGoogle Scholar
  46. 46.
    Parsons J, Burrows CP, Sambles JR, Barnes WL (2010) A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures. J Mod Opt 57(5):356–365CrossRefGoogle Scholar
  47. 47.
    Micic M, Klymyshyn N, Suh YD, Lu HP (2003) Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy. J Phys Chem B 107(7):1574–1584CrossRefGoogle Scholar
  48. 48.
    Downes A, Salter D, Elfick A (2006) Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy. J Phys Chem B 110(13):6692–6698CrossRefGoogle Scholar
  49. 49.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379CrossRefGoogle Scholar
  50. 50.
    Deckert-Gaudig T, Deckert V (2009) Ultraflat transparent gold nanoplates—ideal substrates for tip-enhanced Raman scattering experiments. Small 5(4):432–436CrossRefGoogle Scholar
  51. 51.
    Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R (2009) Tip-enhanced Raman scattering: influence of the tip-surface geometry on optical resonance and enhancement. Surf Sci 603(10–12):1335–1341CrossRefGoogle Scholar
  52. 52.
    Hayazawa N, Ishitobi H, Taguchi A, Tarun A, Ikeda K, Kawata S (2007) Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy. Jpn J Appl Phys 46(12):7995–7999CrossRefGoogle Scholar
  53. 53.
    Pettinger B, Domke KF, Zhang D, Schuster R, Ertl G (2007) Direct monitoring of plasmon resonances in a tip-surface gap of varying width. Phys Rev B Condens Matter Mater Phys 76(11)Google Scholar
  54. 54.
    Rendell RW, Scalapino DJ (1981) Surface plasmons confined by microstructures on tunnel junctions. Phys Rev B 24(6):3276–3294CrossRefGoogle Scholar
  55. 55.
    Berndt R, Gimzewski JK, Johansson P (1993) Electromagnetic interactions of metallic objects in nanometer proximity. Phys Rev Lett 71(21):3493–3496CrossRefGoogle Scholar
  56. 56.
    Issa NA, Guckenberger R (2007) Optical nanofocusing on tapered metallic waveguides. Plasmonics 2(1):31–37CrossRefGoogle Scholar
  57. 57.
    Issa NA, Guckenberger R (2007) Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons. Opt Express 15(19):12131–12144CrossRefGoogle Scholar
  58. 58.
    Taminiau TH, Stefani FD, Segerink FB, Van Hulst NF (2008) Optical antennas direct single-molecule emission. Nat Photonics 2(4):234–237CrossRefGoogle Scholar
  59. 59.
    Felidj N, Grand J, Laurent G, Aubard J, Levi G, Hohenau A, Galler N, Aussenegg FR, Krenn JR (2008) Multipolar surface plasmon peaks on gold nanotriangles. J Chem Phys 128(9):094702CrossRefGoogle Scholar
  60. 60.
    Sajanlal PR, Pradeep T (2008) Electric-field-assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates. Adv Mater 20(5):980–983CrossRefGoogle Scholar
  61. 61.
    Sajanlal PR, Pradeep T (2009) Electric field assisted growth of highly surface enhanced Raman active gold nanotriangles. J Nanosci Nanotechnol 9(9):5283–5287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Photonics and Spectroscopy Laboratory, Division of Physics and ChemistryIndian Institute of Science Education and Research (IISER)PuneIndia

Personalised recommendations