Plasmonics

, Volume 7, Issue 2, pp 331–339 | Cite as

Characterisation of a Gold Nanorod Sol–Gel Utilising Inter-particle Coupling to Yield High Refractive Index Sensitivity

  • Philip J. R. Roche
  • Maurice Cha-Kiu Cheung
  • Sandrine Filion-Côté
  • Jonathan Milette
  • Timothy Gonzalez
  • Gopakumar Gopalakrishnan
  • Mark P. Andrews
  • Bruce R. Lennox
  • Linda Reven
  • Andrew G. Kirk
Article

Abstract

The development of gold nanorod plasmonic sol–gel polymer is presented and characterised with respect to its sensitivity to refractive index change. Structural characterisation of the polymer was conducted using Raman microscopy and energy dispersion spectroscopy while plasmonic function was investigated using UV/VIS spectroscopy. Refractive index sensitivities utilising the peak wavelength shift of the localised surface plasmon resonance were shown to be of the order of 2,338 nm per refractive index unit; in addition, peak absorbance was considered as an alternative measure. Furthermore, demonstration of sensitivity to biomolecule interaction has been shown as a model study. Strong photoluminescence was observed during Raman studies that restricts the potential use of the polymer as a surface-enhanced Raman substrate.

Keywords

Gold nanorods Sol–gel Sensing 

Notes

Acknowledgements

We would like to acknowledge the financial support from FQRNT (Doctoral Research Scholarship B2, Fonds québécois de la recherche sur la nature et les technologies).

References

  1. 1.
    Abbas A, Linman MJ, Cheng Q (2011) New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens Bioelectron 26:1815–1824CrossRefGoogle Scholar
  2. 2.
    Chen H, Lee HJ, Cho C-R, Kim S-H, Kim J-H, Koh K (2009) Surface plasmon resonance investigation of a copolymer containing spiroxazine. Journal of Nanoscience and Nanotechnology 9:7195–7198Google Scholar
  3. 3.
    Kim SA, Byun KM, Kim K, Jang SM, Ma K, Oh Y, Kim D, Kim SJ (2010) Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays. Nanotechnology 21:355503CrossRefGoogle Scholar
  4. 4.
    Manera MG, Spadavecchia J, Taurino J, Rella R (2010) Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process. Journal of Optics 12:035003CrossRefGoogle Scholar
  5. 5.
    Becker J, Trügler A, Jakab U, Hohenester U, Sönnichsen C (2010) Highly sensitive plasmonic silver nanorods. Plasmonics 5:161–167CrossRefGoogle Scholar
  6. 6.
    Wang S, Pedersen PD (2010) Effect of medium for enhanced nanosensing: DDA theory vs experimental studies of Ag nanoparticle assemblies. J Phys Chem C 114:2861–2866CrossRefGoogle Scholar
  7. 7.
    Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658CrossRefGoogle Scholar
  8. 8.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nature Mater 8:867–871CrossRefGoogle Scholar
  9. 9.
    Hoa XD, Kirk AG, Tabrizian M (2007) Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings. Biosens Bioelectron 23:151–160CrossRefGoogle Scholar
  10. 10.
    Liu L, Zheng H-Z, Zhang Z-J, Huang Y-M, Chen S-M, Y-F Hu (2008) Interaction of bovine serum albumin and albumin-gold nanoconjugates with l-aspartic acid. A spectroscopic approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 69:701–705CrossRefGoogle Scholar
  11. 11.
    Tan BJY, Sow CH, Koh TS, Chin KC, Wee ATS, Ong CK (2005) Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing. J Phys Chem B 109:11100–11109CrossRefGoogle Scholar
  12. 12.
    Henzie J, Lee MH, Odom TW (2007) Multiscale patterning of plasmonic metamaterials. Nanotechnology 2:549–554, ials. Nat Google Scholar
  13. 13.
    Dai Q, Coutts J, Zou J, Huo Q (2008) Surface modification of gold nanorods through a place exchange reaction inside an ionic exchange resin. Chem Comm 25:2858–2860CrossRefGoogle Scholar
  14. 14.
    Hasan M, Bethell D, Brust M (2002) The fate of sulfur-bound hydrogen on formation of self-assembled thiol monolayers on Gold:1H NMR spectroscopic evidence from solutions of gold clusters. J Am Chem Soc 124:1132–1133CrossRefGoogle Scholar
  15. 15.
    Grönbeck H, Curioni A, Andreoni W (2000) Thiols and disulfides on the Au(111) surface: the headgroup–gold interaction. J Am Chem Soc 122:3839–3842CrossRefGoogle Scholar
  16. 16.
    Collino R, Therasse J, Chaput F, Boilot JP, Levy Y (1996) Biological activity of functionalized SiO2 thin films prepared by sol–gel method. JSol–gel Sci Technol 7:81–85CrossRefGoogle Scholar
  17. 17.
    Ball V, Ramsden JJ (1998) Buffer dependence of refractive index increments of protein solutions. Biopolymers 46:489–492CrossRefGoogle Scholar
  18. 18.
    Wurtz GA, Dickson W, O'Connor D, Atkinson R, Hendren W, Evans P, Pollard R, Zayats AV (2008) Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime. Opt Express 16:7460–7470CrossRefGoogle Scholar
  19. 19.
    Soria G, Ben-Baruch A (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267:271–85CrossRefGoogle Scholar
  20. 20.
    Daly C, Rollins BJ (2003) Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: therapeutic opportunities and controversies. Microcirculation 10:247–257Google Scholar
  21. 21.
    Zhang Z, Yu Y, Xu F, Berchuck A, van Haaften-Day C, Havrilesky LJ, de Bruijn HWA, Van der Zee AGJ, Woolas RP, Jacobs IJ, Skates S, Chan DW, Bast RC Jr (2007) Combining multiple serum tumor markers improves detection of stage I epithelial ovarian cancer. Gynecol Oncol 107:526–531CrossRefGoogle Scholar
  22. 22.
    Ma Z, Ma Q, Wang Z (2009) An evaluation of the diagnostic value of CA19-9 and CEA levels in patients with pancreatic cancer. Journal of Nanjing Medical University 23:199–202CrossRefGoogle Scholar
  23. 23.
    Tamakoshi K, Kikkawa F, Shibata K, Tomoda K, Obata NH, Wakahara Tokuhashi FY, Ishikawa H, Kawai M, Tomoda Y (1996) Clinical value of Cal25, CA19.9, CEA, CA72-4, and TPA in borderline ovarian tumor. Gynaecologic Oncology 62:67–72CrossRefGoogle Scholar
  24. 24.
    Chien W-Y, Szkopek T (2008) Multiple-multipole simulation of optical near-fields in discrete metal nanosphere assemblies. Opt Express 2008(16):1820–1835CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Philip J. R. Roche
    • 1
  • Maurice Cha-Kiu Cheung
    • 2
  • Sandrine Filion-Côté
    • 1
  • Jonathan Milette
    • 3
  • Timothy Gonzalez
    • 4
  • Gopakumar Gopalakrishnan
    • 3
  • Mark P. Andrews
    • 4
  • Bruce R. Lennox
    • 3
  • Linda Reven
    • 3
  • Andrew G. Kirk
    • 1
  1. 1.Photonic Systems Group, Department of Electrical and Computer EngineeringMcGill UniversityMontrealCanada
  2. 2.Sensor Microsystems Laboratory, Department of Electrical and Computer EngineeringMcGill UniversityMontrealCanada
  3. 3.Lennox and Reven Groups, Department of ChemistryMcGill UniversityMontrealCanada
  4. 4.Andrews Group, Department of ChemistryMcGill UniversityMontrealCanada

Personalised recommendations