Advertisement

Plasmonics

, Volume 7, Issue 2, pp 293–299 | Cite as

Bragg-Scattered Surface Plasmon Microscopy: Theoretical Study

  • Mana Toma
  • Wolfgang Knoll
  • Jakub DostalekEmail author
Article

Abstract

We present a new approach to surface plasmon microscopy with high refractive index sensitivity and spatial resolution that is not limited by the propagation length of surface plasmons. It is based on a nanostructured metallic sensor surface supporting Bragg-scattered surface plasmons. We show that these non-propagating surface plasmon modes are excellently suited for spatially resolved observations of refractive index variations on the sensor surface owing to their highly confined field profile perpendicular to as well as parallel to the metal interface. The presented theoretical study reveals that this approach enables reaching similar refractive index sensitivity as regular surface plasmon resonance (SPR) microscopy and offers the advantage of improved spatial resolution when observing dielectric features with lateral size <10 μm for the wavelength around 800 nm and gold as the SPR-active metal. This paper demonstrates the potential of Bragg-scattered surface plasmon microscopy for high-throughput SPR biosensing with high-density microarrays.

Keywords

Surface plasmon resonance SPR microscopy SPR imaging Diffraction grating Biosensor 

Notes

Acknowledgments

The authors would like to acknowledge the help of Dr. Roman Bruck in implementing DiPoG software on a Linux-based computation cluster. Support for this work was provided in part by the Center of Innovation and Technology of Vienna (ZIT) and the Austrian NANO Initiative (FFG and BMVIT) through the NILPlasmonics project within the NILAustria cluster (www.NILAustria.at).

References

  1. 1.
    Rothenhäusler B, Knoll W (1988) Surface–plasmon microscopy. Nature 332:615–617CrossRefGoogle Scholar
  2. 2.
    Wang ZZ, Wilkop T, Han JH, Dong Y, Linman MJ, Cheng Q (2008) Development of air-stable, supported membrane arrays with photolithography for study of phosphoinositide–protein interactions using surface plasmon resonance imaging. Anal Chem 80:6397–6404CrossRefGoogle Scholar
  3. 3.
    Giebel KF, Bechinger C, Herminghaus S et al (1999) Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. Biophys J 76:509–516CrossRefGoogle Scholar
  4. 4.
    Jamil MMA, Denyer MCT, Youseffi M et al (2008) Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy. J Struct Biol 164:75–80CrossRefGoogle Scholar
  5. 5.
    Scarano S, Mascini M, Turner APF, Minunni M (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25:957–966CrossRefGoogle Scholar
  6. 6.
    Smith EA, Corn RM (2003) Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Appl Spectrosc 57:320–332CrossRefGoogle Scholar
  7. 7.
    Boozer C, Kim G, Cong SX, Guan HW, Londergan T (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr Opin Biotechnol 17:400–405CrossRefGoogle Scholar
  8. 8.
    Lee HJ, Goodrich TT, Corn RM (2001) SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal Chem 73:5525–5531CrossRefGoogle Scholar
  9. 9.
    Shumaker-Parry JS, Cambell CT (2004) Anal Chem 76:907–917CrossRefGoogle Scholar
  10. 10.
    Johansen K (2005) Imaging SPR apparatus. US Patent 6862094Google Scholar
  11. 11.
    Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79:2979–2983CrossRefGoogle Scholar
  12. 12.
    Singh BK, Hillier AC (2006) Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array. Anal Chem 78:2009–2018CrossRefGoogle Scholar
  13. 13.
    Yeatman EM (1996) Resolution and sensitivity in surface plasmon microscopy and sensing. Biosens Bioelectron 11:635–649CrossRefGoogle Scholar
  14. 14.
    Piliarik M, Vaisocherova H, Homola J (2005) A new surface plasmon resonance sensor for high-throughput screening applications. Biosens Bioelectron 20:2104–2110CrossRefGoogle Scholar
  15. 15.
    Stabler G, Somekh MG, See CW (2004) High-resolution wide-field surface plasmon microscopy. J Microsc-Oxf 214:328–333CrossRefGoogle Scholar
  16. 16.
    Wark AW, Lee HJ, Corn RM (2005) Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem 77:3904–3907CrossRefGoogle Scholar
  17. 17.
    Berger CEH, Kooyman RPH, Greve J (1994) Resolution in surface-plasmon microscopy. Rev Sci Instrum 65:2829–2836CrossRefGoogle Scholar
  18. 18.
    Stewart ME, Mack NH, Malyarchuk V et al (2006) Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. PNAS 103:17143–17148CrossRefGoogle Scholar
  19. 19.
    Kvasnicka P, Homola J (2008) Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations. Biointerphases 3:FD4–FD11CrossRefGoogle Scholar
  20. 20.
    Barnes WL, Preist TW, Kitson SC, Sambles JR, Cotter NK, Nash DJ (1995) Photonic gaps in the dispersion of surface plasmons on gratings. Physical Rev B 51:11164–11168CrossRefGoogle Scholar
  21. 21.
    Dostalek J, Adam P, Kvasnicka P, Telezhnikova O, Homola J (2007) Spectroscopy of Bragg-scattered surface plasmons for characterization of thin biomolecular films. Opt Lett 32:2903–2905CrossRefGoogle Scholar
  22. 22.
    Lindquist NC, Lesuffleur A, Im H, Oh SH (2009) Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. Lab on a Chip 9:382–387CrossRefGoogle Scholar
  23. 23.
    SCHOTT AG (2011) Optical Glass Data Sheets, GermanyGoogle Scholar
  24. 24.
    Homola J (2006) Surface plasmon resonance based sensors. Springer, BerlinCrossRefGoogle Scholar
  25. 25.
    Voros J (2004) The density and refractive index of adsorbing protein layers. Biophys J 87:553–561CrossRefGoogle Scholar
  26. 26.
    Palik ED (1998) Handbook of optical constants of solids. Elsevier, New YorkGoogle Scholar
  27. 27.
    Kretschmann E (1971) Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen. Zeitschrift für Physik A Hadrons Nuclei 241:313–324Google Scholar
  28. 28.
    Rothenhausler B, Knoll W (1988) Surface plasmon interferometry in the visible. Appl Phys Lett 52:1554–1556CrossRefGoogle Scholar
  29. 29.
    Piliarik M, Homola J (2009) Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17:16505–16517CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Health and Environment DepartmentAIT-Austrian Institute of Technology GmbHViennaAustria

Personalised recommendations