, Volume 7, Issue 2, pp 253–260 | Cite as

Surface Plasmon Polariton Emission Prompted by Organic Nanofibers on Thin Gold Films

  • Till LeißnerEmail author
  • Kasper Thilsing-Hansen
  • Christoph Lemke
  • Stephan Jauernik
  • Jakob Kjelstrup-Hansen
  • Michael Bauer
  • Horst-Günter Rubahn


The excitation of surface plasmon polaritons (SPP) at a gold–vacuum interface by femtosecond light pulses mediated by organic nanofiber-induced dielectric perturbations is observed using interferometric time-resolved photoemission electron microscopy. The experimental data are quantitatively reproduced by analytic simulations, where the nanofibers are considered as superior source of the SPP emission. The flexibility and tuneability of phenylene-based nanofibers in their morphology and intrinsic optical properties open up future applications to fabricate custom-designed nanoscale sources of SPP.


Organic nanofibers Surface plasmon polariton Femtosecond PEEM 



Special thanks go to Christian Schneider, Pascal Melchior, and Martin Aeschlimann from the University of Kaiserslautern for support regarding PEEM experiment and simulations and Frank Meyer zu Heringdorf from the University of Essen-Duisburg for support in setting up the interferometer for the ITR-PEEM experiments. This work was funded by the Deutsche Forschungsgemeinschaft through Priority Program 1391 Ultrafast Nanooptics as well as the Danish Research Agency through various grants.


  1. 1.
    Maier S, Brongersma M, Kik P, Meltzer S, Requicha A, Atwater H (2001) Plasmonics-a route to nanoscale optical devices. Adv Mater 13(19):1501–1505. doi: 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z CrossRefGoogle Scholar
  2. 2.
    Barnes W, Dereux A, Ebbesen T (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830. doi: 10.1038/nature01937 CrossRefGoogle Scholar
  3. 3.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193. doi: 10.1126/science.1114849 CrossRefGoogle Scholar
  4. 4.
    Pyayt AL, Wiley B, Xia Y, Chen A, Dalton L (2008) Integration of photonic and silver nanowire plasmonic waveguides. Nat Nano 3(11):660–665CrossRefGoogle Scholar
  5. 5.
    Hill RT, Mock JJ, Urzhumov Y, Sebba DS, Oldenburg SJ, Chen SY, Lazarides AA, Chilkoti A, Smith DR (2010) Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. Nano Lett 10(10):4150–4154. doi: 10.1021/nl102443p CrossRefGoogle Scholar
  6. 6.
    Ohtsu M, Kobayashi K, Kawazoe T, Sangu S, Yatsui T (2002) Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields. IEEE J Sel Top Quantum Electron 8(4):839–862. doi: 10.1109/JSTQE.2002.801738 CrossRefGoogle Scholar
  7. 7.
    Kretschmann E (1972) The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness. Opt Commun 5(5):331–336. doi: 10.1016/0030-4018(72)90026-0 CrossRefGoogle Scholar
  8. 8.
    Heitmann D (1977) Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces. J Phys C Solid State Phys 10(3):397. doi: 10.1088/0022-3719/10/3/010 CrossRefGoogle Scholar
  9. 9.
    Maier SA (2007) Plasmonics: fundamentals and applications. SpringerGoogle Scholar
  10. 10.
    Ditlbacher H, Krenn JR, Felidj N, Lamprecht B, Schider G, Salerno M, Leitner A, Aussenegg FR (2002) Fluorescence imaging of surface plasmon fields. Appl Phys Lett 80(3):404–406. doi: 10.1063/1.1435410 CrossRefGoogle Scholar
  11. 11.
    Schiek M, Balzer F, Al-Shamery K, Lutzen A, Rubahn HG (2008) Light-emitting organic nanoaggregates from functionalized p-quaterphenylenes. Soft Matter 4(2):277–285. doi: 10.1039/b713295f CrossRefGoogle Scholar
  12. 12.
    Balzer F, Bordo VG, Simonsen AC, Rubahn HG (2003) Optical waveguiding in individual nanometerscale organic fibers. Phys Rev B 67(11):115408. doi: 10.1103/PhysRevB.67.115408 CrossRefGoogle Scholar
  13. 13.
    Radko IP, Fiutowski J, Tavares L, Rubahn HG, Bozhevolnyi SI (2011) Organic nanofiber-loaded surface plasmon-polariton waveguides. Opt Express 19(16):15155–15161. doi: 10.1364/OE.19.015155 CrossRefGoogle Scholar
  14. 14.
    Kubo A, Onda K, Petek H, Sun Z, Jung YS, Kim HK (2005) Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett 5(6):1123. doi: 10.1021/nl0506655 CrossRefGoogle Scholar
  15. 15.
    Bauer M, Wiemann C, Lange J, Bayer D, Rohmer M, Aeschlimann M (2007) Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy. Appl Phys A: Mater Sci Process 88(3):473–480. doi: 10.1007/s00339-007-4056-z CrossRefGoogle Scholar
  16. 16.
    Meyer zu Heringdorf F, Chelaru L, Möllenbeck S, Thien D, Horn-von Hoegen M (2007) Femtosecond photoemission microscopy. Surf Sci 601(20):4700–4705CrossRefGoogle Scholar
  17. 17.
    Swiech W, Fecher G, Ziethen C, Schmidt O, Schönhense G, Grzelakowski K, Schneider CM, Frömter R, Oepen H, Kirschner J (1997) Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity. J Electron Spectrosc Relat Phenom 84(1–3):171–188. doi: 10.1016/S0368-2048(97)00022-4 CrossRefGoogle Scholar
  18. 18.
    Schmidt O, Bauer M, Wiemann C, Porath R, Scharte M, Andreyev O, Schönhense G, Aeschlimann M (2002) Time-resolved two photon photoemission electron microscopy. Appl Phys B: Lasers Optics 74:223–227. doi: 10.1007/s003400200803 CrossRefGoogle Scholar
  19. 19.
    Douillard L, Charra F, Korczak Z, Bachelot R, Kostcheev S, Lerondel G, Adam PM, Royer P (2008) Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett 8(3):935–940. doi: 10.1021/nl080053v CrossRefGoogle Scholar
  20. 20.
    Cinchetti M, Gloskovskii A, Nepjiko SA, Schönhense G, Rochholz H, Kreiter M (2005) Photoemission electron microscopy as a tool for the investigation of optical near fields. Phys Rev Lett 95:047601. doi: 10.1103/PhysRevLett.95.047601 CrossRefGoogle Scholar
  21. 21.
    Wehner M, Ulm M, Wegener M (1997) Scanning interferometer stabilized by use of pancharatnam’s phase. Opt Lett 22(19):1455–1457. doi: 10.1364/OL.22.001455 CrossRefGoogle Scholar
  22. 22.
    Balzer F, Rubahn H (2009) Dipole-assisted self-assembly of light-emitting p-np needles on mica. Appl Phys Lett 79(23):3860–3862. doi: 10.1063/1.1424071 CrossRefGoogle Scholar
  23. 23.
    Kubo A, Pontius N, Petek H (2007) Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett 7(2):470–475. doi: 10.1021/nl0627846 CrossRefGoogle Scholar
  24. 24.
    Johnson P, Christy R (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. doi: 10.1103/PhysRevB.6.4370 CrossRefGoogle Scholar
  25. 25.
    Lamprecht B, Krenn JR, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg FR, Weeber JC (2001) Surface plasmon propagation in microscale metal stripes. Appl Phys Lett 79(1):51–53. doi: 10.1063/1.1380236 CrossRefGoogle Scholar
  26. 26.
    Wagner T, Fritz DR, Zeppenfeld P (2011) Standing and flat lying ∝-6t molecules probed by imaging photoelectron spectroscopy. Organ Electron 12(3):442–446. doi: 10.1016/j.orgel.2010.12.011 CrossRefGoogle Scholar
  27. 27.
    Fleming AJ, Surnev S, Netzer FP, Ramsey MG (2009) Growth and desorption kinetics of sexiphenyl needles: an in-situ afm/peem study. In: Al-Shamery K, Horowitz G, Sitter H, Rubahn HG (eds) Interface controlled organic thin films. Springer proceedings in physics, vol 129. Springer, Berlin, Heidelberg, pp 167–169. doi: 10.1007/978-3-540-95930-4 CrossRefGoogle Scholar
  28. 28.
    Buckanie NM, Meyer zu Heringdorf FJ (2010) Nonlinear photoemission microscopy with surface plasmon polaritons. Microsc Microanal 16(Suppl 2):502–503. doi: 10.1017/S1431927610057557 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Till Leißner
    • 1
    Email author
  • Kasper Thilsing-Hansen
    • 2
  • Christoph Lemke
    • 1
  • Stephan Jauernik
    • 1
  • Jakob Kjelstrup-Hansen
    • 2
  • Michael Bauer
    • 1
  • Horst-Günter Rubahn
    • 2
  1. 1.IEAPChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Mads Clausen Institute, NanoSYDUniversity of Southern DenmarkSønderborgDenmark

Personalised recommendations