, Volume 7, Issue 1, pp 167–173 | Cite as

Seed-mediated Plasmon-driven Regrowth of Silver Nanodecahedrons (NDs)

  • Haifei Lu
  • Haixi Zhang
  • Xia Yu
  • Shuwen Zeng
  • Ken-Tye Yong
  • Ho-Pui HoEmail author


We report the synthesis of silver nanodecahedrons (NDs) for extending the localized surface plasmon resonance (LSPR) of silver nanostructures from blue to green-orange (~590 nm), which will enable much wider application opportunities using common laser light sources. In our photo-assisted method, we use a light-emitting-diode (LED) to control regrowth of silver ND from precursor seeds. Highly uniform silver NDs are synthesized when the LED emission peak coincides with the LSPR peak of the seeds. A two-step process involving precursor self-transformation into silver nanoprisms and nanoplates, and subsequent photo-activated regrowth of silver NDs has been proposed. Surface-enhanced Raman scattering of silver NDs in different sizes has been studied, and the average enhancement factor for each size is estimated to be in the order of ~106.


Localized surface plasmon resonance (LSPR) Silver nanodecahedron (AgND) Photochemical synthesis Surface-enhanced Raman scattering (SERS) 



The authors thank Drs. Isakov Dmitry and Ning Ke for conducting FESEM and TEM characterizations of the samples, respectively. The project is supported by SIMTech collaborative research grant SIM/09-220001. HFL's research studentship and a Group Research Grant 3110048 from The Chinese University of Hong Kong are gratefully acknowledged.

Supplementary material

11468_2011_9290_MOESM1_ESM.docx (1.6 mb)
ESM 1 Extinction spectrum of white light source for the regrowth of silver NDs as well as the FESEM image of the final product, FDTD simulation results of silver ND, FESEM images for NDs in large scale and final product irradiated by 578 nm LED, and histograms showing the size distribution of silver nanodecahedrons that exhibit different extinction peaks. (DOCX 1.55 MB)


  1. 1.
    Maier SA (2005) Curr Nanosci 1:17CrossRefGoogle Scholar
  2. 2.
    Li YN, Wu YL, Ong BS (2005) J Am Chem Soc 127:3266CrossRefGoogle Scholar
  3. 3.
    Ung T, Liz-Marzan L, Mulvaney P (1999) J Phys Chem B 103:6770CrossRefGoogle Scholar
  4. 4.
    Zeng SW, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011) Plasmonics. doi: 10.1007/s11468-011-9228-1
  5. 5.
    Jain PK, Huang XH, El-Sayed IH, El-Sayed MA (2007) Plasmonics 2:107CrossRefGoogle Scholar
  6. 6.
    Evanoff DD, Chumanov G (2004) J Phys Chem B 108:13948CrossRefGoogle Scholar
  7. 7.
    Pietrobon B, McEachran M, Kitaev V (2009) ACS Nano 3:21CrossRefGoogle Scholar
  8. 8.
    Wiley BJ, Chen YC, McLellan JM, Xiong YJ, Li ZY, Ginger D, Xia YN (2007) Nano Lett 7:1032CrossRefGoogle Scholar
  9. 9.
    Sun YG, Mayers B, Xia YN (2003) Nano Lett 3:675CrossRefGoogle Scholar
  10. 10.
    Murphy CJ, Jana NR (2002) Adv Mater 14:80CrossRefGoogle Scholar
  11. 11.
    Jin RC, Cao YC, Hao EC, Metraux GS, Schatz GC, Mirkin CA (2003) Nature 425:487CrossRefGoogle Scholar
  12. 12.
    Chen SH, Fan ZY, Carroll DL (2002) J Phys Chem B 106:10777CrossRefGoogle Scholar
  13. 13.
    Zhang QA, Li WY, Wen LP, Chen JY, Xia YN (2010) Chem-Eur J 16:10234CrossRefGoogle Scholar
  14. 14.
    Zhang QA, Li WY, Moran C, Zeng J, Chen JY, Wen LP, Xia YN (2010) J Am Chem Soc 132:11372CrossRefGoogle Scholar
  15. 15.
    Zheng XL, Zhao XJ, Guo DW, Tang B, Xu SP, Zhao B, Xu WQ, Lombardi JR (2009) Langmuir 25:3802CrossRefGoogle Scholar
  16. 16.
    Pietrobon B, Kitaev V (2008) Chem Mater 20:5186CrossRefGoogle Scholar
  17. 17.
    Stamplecoskie KG, Scaiano JC (2010) J Am Chem Soc 132:1825CrossRefGoogle Scholar
  18. 18.
    Gao Y, Jiang P, Song L, Wang JX, Liu LF, Liu DF, Xiang YJ, Zhang ZX, Zhao XW, Dou XY, Luo SD, Zhou WY, Xie SS (2006) J Cryst Growth 289:376CrossRefGoogle Scholar
  19. 19.
    Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN (2005) Nano Lett 5:2034CrossRefGoogle Scholar
  20. 20.
    Zhou F, Li ZY, Liu Y, Xia YN (2008) J Phys Chem C 112:20233CrossRefGoogle Scholar
  21. 21.
    Xia Y, Xiong YJ, Lim B, Skrabalak SE (2009) Angew Chem Int Edit 48:60Google Scholar
  22. 22.
    Xue C, Metraux GS, Millstone JE, Mirkin CA (2008) J Am Chem Soc 130:8337CrossRefGoogle Scholar
  23. 23.
    Rocha TCR, Winnischofer H, Westphal E, Zanchet D (2007) J Phys Chem C 111:2885CrossRefGoogle Scholar
  24. 24.
    Zheng XL, Xu WQ, Corredor C, Xu SP, An J, Zhao B, Lombardi JR (2007) J Phys Chem C 111:14962CrossRefGoogle Scholar
  25. 25.
    Rycenga M, Kim MH, Camargo PHC, Cobley C, Li ZY, Xia YN (2009) J Phys Chem A 113:3932CrossRefGoogle Scholar
  26. 26.
    Jun BH, Kim JH, Park H, Kim JS, Yu KN, Lee SM, Choi H, Kwak SY, Kim YK, Jeong DH, Cho MH, Lee YS (2007) J Comb Chem 9:237CrossRefGoogle Scholar
  27. 27.
    Camargo PHC, Rycenga M, Au L, Xia YN (2009) Angew Chem Int Edit 48:2180CrossRefGoogle Scholar
  28. 28.
    Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) J Phys Chem C 111:13794CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Haifei Lu
    • 1
    • 2
  • Haixi Zhang
    • 1
    • 2
  • Xia Yu
    • 2
  • Shuwen Zeng
    • 2
    • 3
  • Ken-Tye Yong
    • 3
  • Ho-Pui Ho
    • 1
    Email author
  1. 1.Department of Electronic and EngineeringThe Chinese University of Hong KongShatinPeople’s Republic of China
  2. 2.Singapore Institute of Manufacturing TechnologySingaporeSingapore
  3. 3.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations