Plasmonics

, Volume 7, Issue 1, pp 137–141 | Cite as

Optical Plasmon Properties of Co-Ag Nanocomposites Within the Mean-Field Approximation

  • Hernando Garcia
  • Ritesh Sachan
  • Ramki Kalyanaraman
Article

Abstract

The optical properties of multi-metal nanocomposites made from Cobalt (Co), and Silver (Ag) are analyzed theoretically within the mean field approximation, and experimentally verified using absorption spectroscopy. The experimental system was modeled as a thin layer composed of hemispherical nanoparticles formed by grains of Co and Ag in contact with air and the SiO\(_{\text{2}}\) substrate. The main aspects of the absorption curve, such as the shape and spectral location of the localized surface plasmon resonance, are well captured by a simple self-consistent mixing model using a modified Maxwell-Garnett approach and the Milton lower bound.

Keywords

Plasmon Nanoparticles Mean-field Composites Ag 

Notes

Acknowledgements

HG acknowledges support by the NSF through grant CMMI-0757547 while RK acknowledges support by NSF grants CMMI-0855949, DMR-0805258, and the NSF supported TN-SCORE program.

References

  1. 1.
    Eldada L (2001) Advances in telecom and datacom optical components. Opt Eng 40:1165–1178CrossRefGoogle Scholar
  2. 2.
    Sepúlveda B, Calle A, Lechuga LM, Armelles G (2006) Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt Lett 31:1085CrossRefGoogle Scholar
  3. 3.
    Zayats M, Pogorelova S, Kharitonov A, Lioubashevski O, Katz E, Willner I (2003) An nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations. Chem A - Eur J 9:6108–6114CrossRefGoogle Scholar
  4. 4.
    Gonzalez-Diaz JB, Garcia-Martin A, Garcia-Martin JM, Cebollada A, Armelles G, Sepulveda B, Alaverdyan Y, Kall M (2008) Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small 4:202–205CrossRefGoogle Scholar
  5. 5.
    Maier S (2007) Plasmoncs: Fundamentals and applications. Springer, New YorkGoogle Scholar
  6. 6.
    Krishna H, Miller C, Longstreth-Spoor L, Nussinov Z, Gangopadhyay AK, Kalyanaraman R (2008) Unusual size-dependent magnetization in near hemispherical Co nanomagnets on SiO2 from fast pulsed laser processing. J Appl Phys 103:073902CrossRefGoogle Scholar
  7. 7.
    Krishna H, Gangopadhyay AK, Strader J, Kalyanaraman R (2011) Nanosecond laser-induced synthesis of nanoparticles with tailorable magnetic anisotropy. J Magn Magn Mater 323:356–362CrossRefGoogle Scholar
  8. 8.
    Moskovits M, Srnova-Sloufova I, Vlckova B (2002) Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum. J Chem Phys 116(23):10435CrossRefGoogle Scholar
  9. 9.
    Mie G (1908) Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann Phys 25:377CrossRefGoogle Scholar
  10. 10.
    Garcia H, Trice J, Kalyanaraman R, Sureshkumar R (2007) Self-consistent determination of plasmonic resonances in ternary nanocomposites. Phys Rev B 75:045439CrossRefGoogle Scholar
  11. 11.
    Magruder R III, Osborne H Jr, Zuhr R (1994) Nonlinear-optical properties of nanometer dimension ag-cu particles in silica formed by sequential ion-implantation. J Non-Cryst Sol 176:299CrossRefGoogle Scholar
  12. 12.
    Garcia H, Kalyanaraman R, Sureshkumar R (2009) Nonlinear optical properties of multi-metal nanocomposites in a glass matrix. J Phys B - At Mol Opt Phys 42:175401CrossRefGoogle Scholar
  13. 13.
    Krishna H, Shirato N, Yadavali S, Sachan R, Strader J, Kalyanaraman R (2011) Self-organization of nanoscale multi layer liquid metal films: experiment and theory. ACS Nano 5:470–476CrossRefGoogle Scholar
  14. 14.
    Favazza C, Trice J, Gangopadhyay AK, Garcia H, Sureshkumar R, Kalyanaraman R (2006) Nanoparticle ordering by dewetting of Co on SiO2. J Electron Mater 35:1618–1620CrossRefGoogle Scholar
  15. 15.
    Krishna H, Favazza C, Gangopadhyay AK, Kalyanaraman R (2008) Functional nanostructures through nanosecond laser dewetting of thin metal films. JOM 60:37–42CrossRefGoogle Scholar
  16. 16.
    Garnett J (1904) Color in metal glasses and in metal films. Philos Trans R Soc Lond Ser A 203:385CrossRefGoogle Scholar
  17. 17.
    Sihvola A (2002) How strict are theoretical bounds for dielectric properties of mixtures? IEEE Trans Geosci Remote Sens 40:880CrossRefGoogle Scholar
  18. 18.
    Haija A, Freeman W, Roarty T (2006) Effective characteristic matrix of ultathin multilayer structures. Opt Appl 26:39Google Scholar
  19. 19.
    www.sopra sa.com, SOPRA database
  20. 20.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer series in material science, GermanyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hernando Garcia
    • 1
  • Ritesh Sachan
    • 2
    • 3
  • Ramki Kalyanaraman
    • 2
    • 3
    • 4
  1. 1.Department of PhysicsSouthern Illinois UniversityEdwardsvilleUSA
  2. 2.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA
  3. 3.Sustainable Energy and Education Research CenterUniversity of TennesseeKnoxvilleUSA
  4. 4.Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations