Advertisement

Plasmonics

, Volume 7, Issue 1, pp 99–106 | Cite as

Optimization of the Field Enhancement and Spectral Bandwidth of Single and Coupled Bimetal Core–Shell Nanoparticles for Few-Cycle Laser Applications

  • Ying-Ying Yang
  • Edit Csapó
  • Yong-Liang Zhang
  • Frederik Süßmann
  • Sarah L. Stebbings
  • Xuan-Ming Duan
  • Zhen-Sheng Zhao
  • Imre Dékány
  • Matthias F. KlingEmail author
Article

Abstract

We have theoretically studied and optimized the field enhancement and temporal response of single and coupled bimetal Ag/Au core–shell nanoparticles (NPs) with a diameter of 160 nm and compared the results to pure Ag and Au NPs. Very high-field enhancements with an amplitude reaching 100 (with respect to the laser field centered at 800 nm) are found at the center of a 2-nm gap between Ag/Au core–shell dimers. We have explored the excitation of the bimetal core–shell particles by Fourier transform-limited few-cycle optical pulses and identified conditions for an ultrafast plasmonic decay on the order of the excitation pulse duration. The high-field enhancement and ultrafast decay makes bimetal core–shell particles interesting candidates for applications such as the generation of ultrashort extreme ultraviolet radiation pulses via nanoplasmonic field enhancement. Moreover, in first experimental studies, we synthesized small bimetal Ag/Au core–shell NPs and compared their optical response with pure Au and Ag NPs and numerical results.

Keywords

Plasmonic absorption spectra Nanoplasmonic field enhancement Few-cycle laser pulses Nanoparticle synthesis Core–shell nanoparticles 

Notes

Acknowledgments

This work was supported by the BMBF under PhoNa, contract number 03IS2101B, the DFG via the Emmy-Noether program and SPP1391. M.F.K. acknowledges support from KAIN within the KSU-MPQ collaboration, and S.L.S. acknowledges a fellowship from the Alexander von Humboldt Foundation.

References

  1. 1.
    Krausz F, Ivanov M (2009) Rev Mod Phys 81:163CrossRefGoogle Scholar
  2. 2.
    Corkum PB (1993) Phys Rev Lett 71:1994CrossRefGoogle Scholar
  3. 3.
    Maier S, Brongersma M, Kik P, Meltzer S, Requicha A, Koel B, Atwater H (2003) Adv Mater 15:562CrossRefGoogle Scholar
  4. 4.
    Stockman MI, Kling MF, Kleineberg U, Krausz F (2007) Nat Photonics 1:539CrossRefGoogle Scholar
  5. 5.
    Dombi P, Irvine SE, Rácz P, Lenner M, Kroó N, Farkas G, Mitrofanov A, Baltuška A, Fuji T, Krausz F, Elezzabi AY (2010) Opt Express 18:24206CrossRefGoogle Scholar
  6. 6.
    Tuchscherer P, Rewitz C, Voronine DV, García de Abajo FJ, Pfeiffer W, Brixner T (2009) Opt Express 17:14235CrossRefGoogle Scholar
  7. 7.
    Kim S et al (2008) Nature 453:757CrossRefGoogle Scholar
  8. 8.
    Assefa S, Xia F, Vlasov YA (2010) Nature 464:80CrossRefGoogle Scholar
  9. 9.
    Plech A, Kotaidis V, Lorenc M, Boneberg J (2006) Nat Phys 2:44CrossRefGoogle Scholar
  10. 10.
    Sun Y, Xia Y (2002) Science 298:2176CrossRefGoogle Scholar
  11. 11.
    Wiley B, Sun Y, Mayers B, Xia Y (2005) Chem Eur J 11:454CrossRefGoogle Scholar
  12. 12.
    Major K, De C, Obare S (2009) Plasmonics 4:61CrossRefGoogle Scholar
  13. 13.
    Sundaramurthy A, Crozier KB, Kino GS, Fromm DP, Schuck PJ, Moerner WE (2005) Phys Rev B (Condens Matter Mater Phys) 72:165409CrossRefGoogle Scholar
  14. 14.
    Sundaramurthy A, Schuck PJ, Conley NR, Fromm DP, Kino GS, Moerner WE (2006) Nano Lett 6:355CrossRefGoogle Scholar
  15. 15.
    Krenn JR, Schider G, Rechberger W, Lamprecht B, Leitner A, Aussenegg FR (2000) APL 77:3379Google Scholar
  16. 16.
    Mock JJ, Smith DR, Schultz S (2003) Nano Letters 3:485CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Weber-Bargioni A, Wu SW, Dhuey S, Cabrini S, Schuck PJ (2009) Nano Lett 9:4505CrossRefGoogle Scholar
  18. 18.
    Biagioni P, Polli D, Labardi M, Pucci A, Ruggeri G, Cerullo G, Finazzi M, Duo L (2005) Appl Phys Lett 87:223112CrossRefGoogle Scholar
  19. 19.
    Biagioni P, Huang J S, Duò ograve L, Finazzi M, Hecht B (2009) Phys Rev Lett 102:256801Google Scholar
  20. 20.
    Maier SA, Kik PG, Atwater HA (2003) Phys Rev B 67:205402CrossRefGoogle Scholar
  21. 21.
    Zijlstra P, Chon JWM, Gu M (2009) Nature 459:410CrossRefGoogle Scholar
  22. 22.
    Chah S, Hammond MR, Zare RN (2005) Chem Biol 12:323CrossRefGoogle Scholar
  23. 23.
    Ehrhold K, Christiansen S, Gösele U (2008) In plasmonic properties of bimetal nanoshell cylinders and spheres, the Proceedings of the COMSOL Hannover, 2008, HannoverGoogle Scholar
  24. 24.
    Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Science 328:1135CrossRefGoogle Scholar
  25. 25.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2002) J Phys Chem B 107:668CrossRefGoogle Scholar
  26. 26.
    Cortie MB, McDonagh AM (2011) Chem Rev 111:3713CrossRefGoogle Scholar
  27. 27.
    Serpell CJ, Cookson J, Ozkaya D, Beer PD (2011) Nat Chem 3:478Google Scholar
  28. 28.
    Xia Y, Xiong Y, Lim B, Skrabalak S (2009) Angew Chem Int Ed 48:60CrossRefGoogle Scholar
  29. 29.
    Goulielmakis E et al (2008) Science 320:1614CrossRefGoogle Scholar
  30. 30.
    Kling MF, Siedschlag C, Verhoef AJ, Khan JI, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking MJJ (2006) Science 312:246CrossRefGoogle Scholar
  31. 31.
    Stebbings SL, Süßmann F, Yang Y-Y, Scrinzi A, Durach M, Rusina A, Stockman MI, Kling MF (2011) New J Phys 13Google Scholar
  32. 32.
    Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method. Artech House Publishers, LondonGoogle Scholar
  33. 33.
    Gai H, Wang J, Tian Q (2007) Appl Opt 46:2229CrossRefGoogle Scholar
  34. 34.
    Berenger J-P (1994) J Comput Phys 114:185CrossRefGoogle Scholar
  35. 35.
    Kottmann JP, Martin OJF (2000) IEEE Trans Antennas Propag 48:1719CrossRefGoogle Scholar
  36. 36.
    Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, WuDe Y, Ren B, Wang ZL, Tian ZQ (2010) Nature 464:392CrossRefGoogle Scholar
  37. 37.
    Homola J (2006) Surface plasmon resonance based sensors. Springer series on chemical sensors and biosensors, vol 4. Springer, BerlinGoogle Scholar
  38. 38.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) Science 302:419CrossRefGoogle Scholar
  39. 39.
    Zhang J, Noguez C (2008) Plasmonics 3:127CrossRefGoogle Scholar
  40. 40.
    Turkevich J, Stevenson PC, Hillier J (1951) Discuss Faraday Soc 11:55CrossRefGoogle Scholar
  41. 41.
    Majzik A, Patakfalvi R, Hornok V, Dékány I (2009) Gold Bull 42:113CrossRefGoogle Scholar
  42. 42.
    Majzik A, Fülöp L, Csapó E, Bogár F, Martinek T, Penke B, Bíró G, Dékány I (2010) Colloid Surf B Biointerfaces 81:235CrossRefGoogle Scholar
  43. 43.
    Link S, Wang ZL, El-Sayed MA (1999) J Phys Chem B 103:3529CrossRefGoogle Scholar
  44. 44.
    Belotelov VI, Carotenuto G, Nicolais L, Longo A, Pepe GP, Perlo P, Zvezdin AK (2006) J Appl Phys 99:044304CrossRefGoogle Scholar
  45. 45.
    Halas N, Lal S, Chang W-S, Link S, Nordlander P (2011) Chem Rev 111:3913CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ying-Ying Yang
    • 1
    • 2
    • 3
  • Edit Csapó
    • 4
  • Yong-Liang Zhang
    • 2
  • Frederik Süßmann
    • 1
  • Sarah L. Stebbings
    • 1
  • Xuan-Ming Duan
    • 2
  • Zhen-Sheng Zhao
    • 2
  • Imre Dékány
    • 4
  • Matthias F. Kling
    • 1
    • 5
    Email author
  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany
  2. 2.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  3. 3.Institute of SemiconductorChinese Academy of SciencesBeijingChina
  4. 4.Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of SciencesUniversity of SzegedSzegedHungary
  5. 5.King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations