Plasmonics

, Volume 7, Issue 1, pp 47–52 | Cite as

Short-Range Surface Plasmon Polaritons for Extraordinary Low Transmission Through Ultra-Thin Metal Films with Nanopatterns

Article

Abstract

We provide both experimental and theoretical investigation on extraordinary low transmission through one-dimensional nanoslit and two-dimensional nanohole arrays on ultra-thin metal films. Unambiguous proofs demonstrate that short-range surface plasmon polaritons play a key role leading to this novel phenomenon, which could be useful for creating new polarization filters and other integrated plasmonic components.

Keywords

Plasmons Surface waves Ultra-thin metal films Waveguides 

Supplementary material

11468_2011_9274_MOESM1_ESM.doc (134 kb)
Fig. S1The setup of the transmission measurement system based on an inverted microscope (Olympus IX81). A Xenon lamp is used as the light source. The transmission light is collected by a ×40 objective lens with a numerical aperture of 0.6. A diaphragm is used to confine the observation area. The collected light is coupled into a multimode fiber bundle interfaced with a compact spectrometer (Ocean Optics USB 4000) (DOC 134 kb)
11468_2011_9274_MOESM2_ESM.doc (430 kb)
Fig. S2a Measured TE transmission spectra through the nanopatterned metal film characterized in Fig. 2. b Numerical simulation of the TE transmission the sample. We believe that the difference between the experiment and modeling results is introduced by the nonparallel incident light employed in the microscope imaging system. In addition, nanofabrication error and surface roughness of the sample should also play an important role in the observation, which cannot be considered completely in the numerical modeling (DOC 430 kb)

References

  1. 1.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Nature 391:667 (London)CrossRefGoogle Scholar
  2. 2.
    Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39 (London)CrossRefGoogle Scholar
  3. 3.
    Garcia de Abajo FJ (2007) Light scattering by particle and hole arrays. Rev Mod Phys 79:1267CrossRefGoogle Scholar
  4. 4.
    Weiner J (2009) The physics of light transmission through subwavelength apertures and aperture arrays. Rep Prog Phys 72:064401CrossRefGoogle Scholar
  5. 5.
    Lalanne P, Hugonin JP, Liu HT, Wang B (2009) A microscopic view of the electromagnetic properties of sub-λ metallic surfaces. Surf Sci Rep 64:453CrossRefGoogle Scholar
  6. 6.
    Garcia-Vidal FJ, Martin-Moreno L, Ebbessen TW, Kuipers L (2010) Light passing through subwavelength apertures. Rev Mod Phys 82:729CrossRefGoogle Scholar
  7. 7.
    Sondergaard T, Bozhevolnyi SI, Novikov SM, Beermann J, Devaux E, Ebbesen TW (2010) Extraordinary optical transmission enhancement by nanofocusing. Nano Lett 10:3123CrossRefGoogle Scholar
  8. 8.
    Yang JC, Gao H, Suh JY, Zhou W, Lee MH, Odom TW (2010) Enhanced optical transmission mediated by localized plasmons in anisotropic, three-dimensional nanohole arrays. Nano Lett 10:3173CrossRefGoogle Scholar
  9. 9.
    Reibold D, Shao F, Erdmann A, Peschel U (2009) Extraordinary low transmission effects for ultra-thin patterned metal films. Opt Express 17:544CrossRefGoogle Scholar
  10. 10.
    Spevak IS, Yu Nikitin A, Bezuglyi EV, Levchenko A, Kats AV (2009) Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films. Phys Rev B 79:161406CrossRefGoogle Scholar
  11. 11.
    Rodrigo SG, Martin-Moreno L, Yu Nikitin A, Kats AV, Spevak IS, Garcia-Vidal FJ (2009) Extraordinary optical transmission through hole arrays in optically thin metal films. Optics Lett 34:4CrossRefGoogle Scholar
  12. 12.
    Braun J, Gompf B, Kobiela G, Dressel M (2009) How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Phys Rev Lett 103:203901CrossRefGoogle Scholar
  13. 13.
    Xiao S, Zhang J, Peng L, Jeppesen C, Malureanu R, Kristensen A, Mortensen NA (2010) Nearly zero transmission through periodically modulated ultrathin metal films. Appl Phys Lett 97:071116CrossRefGoogle Scholar
  14. 14.
    Xiao S, Mortensen NA (2011) Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays. Optics Lett 36:37CrossRefGoogle Scholar
  15. 15.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, BerlinGoogle Scholar
  16. 16.
    Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33:5186CrossRefGoogle Scholar
  17. 17.
    Chen Z, Hooper IR, Sambles JR (2008) Strongly coupled surface plasmons on thin shallow metallic gratings. Phys Rev B 77:161405CrossRefGoogle Scholar
  18. 18.
    Hovel M, Gompf B, Dressel M (2010) Dielectric properties of ultrathin metal films around the percolation threshold. Phys Rev B 81:035402CrossRefGoogle Scholar
  19. 19.
    Innes RA, Sambles JR (1987) Optical characterization of gold using surface plasmon-polaritons. J Phys F Metal Physics 17:277CrossRefGoogle Scholar
  20. 20.
    Palik ED (1985) Handbook of optical constants of solids, Vol. 1. Aacademic, Orlando, LFGoogle Scholar
  21. 21.
    Nagpal P, Lindquist NC, Oh SH, Norris DJ (2009) Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325:594CrossRefGoogle Scholar
  22. 22.
    Bai W, Gan Q, Song G, Chen L, Kafafi Z, Bartoli F (2010) Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics. Optics Express 18:A620CrossRefGoogle Scholar
  23. 23.
    Hu H, Ma C, Liu Z (2010) Plasmonic dark field microscopy. Appl Phys Lett 96:113107CrossRefGoogle Scholar
  24. 24.
    Zheng G, Cui X, Yang C (2010) Surface-wave-enabled darkfield aperture: a method for suppressing background during weak signal detection. PNAS 107:9043CrossRefGoogle Scholar
  25. 25.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205CrossRefGoogle Scholar
  26. 26.
    Wu W, Bonakdar A, Mohseni H (2010) Plasmonic enhanced quantum well infrared photodetector with high detectivity. Appl Phys Lett 96:161107CrossRefGoogle Scholar
  27. 27.
    Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3:601CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentLehigh UniversityBethlehemUSA
  2. 2.Department of Electrical EngineeringUniversity at Buffalo, The State University of New YorkBuffaloUSA
  3. 3.Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  4. 4.Department of Materials ScienceFudan UniversityShanghaiChina
  5. 5.Hewlett-Packard LaboratoriesHewlett-Packard CompanyPalo AltoUSA

Personalised recommendations