Plasmonics

, Volume 7, Issue 1, pp 39–46 | Cite as

Polarization Multiplexed Optical Bullseye Antennas

Article

Abstract

We present and analyze a novel optical antenna structure in the form of a polarization multiplexed bullseye antenna with a central nanoaperture. By adjusting the parameters of two, orthogonally oriented, partial bullseye structures, the resonance response for each polarization can be tailored to a specific wavelength. Constructing these dual-polarization structures in aluminum, we predict intra-aperture intensity enhancements exceeding 20 at two independent resonance wavelengths spanning the UV–visible spectrum. Moreover, these resonances share significant intra-aperture excitation volumes.

Keywords

Plasmonics Nanoantennas Metal nanoapertures 

References

  1. 1.
    Grober RD, Schoelkopf RJ, Prober DE (1997) Optical antenna: towards a unity efficiency near-field optical probe. Appl Phys Lett 70:1354–1356CrossRefGoogle Scholar
  2. 2.
    Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE (2004) Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible. Nano Lett 4:957–961CrossRefGoogle Scholar
  3. 3.
    Sundaramurthy A, Crozier KB, Kino GS, Fromm DP, Schuck PJ, Moerner WE (2005) Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip au nanotriangles. Phys Rev B 72:165409CrossRefGoogle Scholar
  4. 4.
    Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WE (2005) Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett 94:017402CrossRefGoogle Scholar
  5. 5.
    Mühlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609CrossRefGoogle Scholar
  6. 6.
    Rogobete L, Kaminski F, Agio M, Sandoghdar V (2007) Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt Lett 32:1623–1625CrossRefGoogle Scholar
  7. 7.
    Muskens OL, Giannini V, Sanchez-Gil JA, Gomez Rivas J (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett 7:2871–2875CrossRefGoogle Scholar
  8. 8.
    Gérard D, Wenger J, Bonod N, Popov E, Rigneault H, Mahdavi F, Blair S, Dintinger J, Ebbesen TW (2008) Nanoaperture-enhanced fluorescence: towards higher detection rates with plasmonic metals. Phys Rev B 77:045413CrossRefGoogle Scholar
  9. 9.
    Taminiau TH, Stefani FD, Segerink FB, van Hulst NF(2008) Optical antennas direct single-molecule emission. Nat Photon 2:234–237CrossRefGoogle Scholar
  10. 10.
    Bakker RM, Yuan HK, Liu Z, Drachev VP, Kildishev AV, Shalaev VM, Pedersen RH, Gresillon S, Boltasseva A (2008) Enhanced localized fluorescence in plasmonic nanoantennae. Appl Phys Lett 92:043101CrossRefGoogle Scholar
  11. 11.
    Fischer H, Martin OJF (2008) Engineering the optical response of plasmonic nanoantennas. Opt Express 16:9144–9154CrossRefGoogle Scholar
  12. 12.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRefGoogle Scholar
  13. 13.
    Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner WE (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photon 3:654–657CrossRefGoogle Scholar
  14. 14.
    Aouani H, Mahboub O, Bonod N, Devaux E, Popov E, Rigneault H, Ebbesen TW, Wenger J (2011) Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. Nano Lett 11:637–644CrossRefGoogle Scholar
  15. 15.
    Khlebtsov BN, Khlebtsov NG (2007) Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment. J Phys Chem C 111:11516–11527CrossRefGoogle Scholar
  16. 16.
    Encina ER, Perassi EM, Coronado EA (2009) Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires. J Phys Chem A 113:4489–4497CrossRefGoogle Scholar
  17. 17.
    Thio T, Pellerin KM, Linke RA, Lezec HJ, Ebbesen TW (2001) Enhanced light transmission through a single subwavelength aperture. Opt Lett 26:1972–1974CrossRefGoogle Scholar
  18. 18.
    Mahdavi F, Blair S (2010) Nanoaperture fluorescence enhancement in the ultraviolet. Plasmonics 5:169–174CrossRefGoogle Scholar
  19. 19.
    Mahboub O, Palacios SC, Genet C, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Ebbesen TW (2010) Optimization of bull’s eye structures for transmission enhancement. Opt Express 18:11292–11299CrossRefGoogle Scholar
  20. 20.
    Shuford KL, Ratner MA, Gray SK, Schatz GC (2006) Finite-difference time-domain studies of light transmission through nanohole structures. Appl Phys B Lasers Opt 84:11–18CrossRefGoogle Scholar
  21. 21.
    Bonod N, Popov E, Gérard D, Wenger J, Rigneault H (2008) Field enhancement in a circular aperture surrounded by a single channel groove. Opt Express 16:2276–2287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations